Maximal endurance time at $\dot{V}O_{2\text{max}}$

R. HUGH MORTON and VERONIQUE BILLAT

Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, NEW ZEALAND; and Laboratory in Sport Science, Ronchin 59790, FRANCE

ABSTRACT

Introduction: There has been significant recent interest in the minimal running velocity which elicits $\dot{V}O_{2\text{max}}$. There also exists a maximal velocity, beyond which the subject becomes exhausted before $\dot{V}O_{2\text{max}}$ is reached. Between these limits, there must be some velocity that permits maximum endurance at $\dot{V}O_{2\text{max}}$, and this parameter has also been of recent interest. This study was undertaken to model the system and investigate these parameters.

Methods: We model the bioenergetic process based on a two-component (aerobic and anaerobic) energy system, a two-component (fast and slow) oxygen uptake system, and a linear control system for maximal attainable velocity resulting from declining anaerobic reserves as exercise proceeds. Ten male subjects each undertook four trials in random order, running until exhaustion at velocities corresponding to 90, 100, 120, and 140% of the minimum velocity estimated as being required to elicit their individual $\dot{V}O_{2\text{max}}$.

Results: The model development produces a skewed curve for endurance time at $\dot{V}O_{2\text{max}}$, with a single maximum. This curve has been successfully fitted to endurance data collected from all 10 subjects ($R^2 = 0.821, P < 0.001$). For this group of subjects, the maximal endurance time at $\dot{V}O_{2\text{max}}$ can be achieved running at a pace corresponding to 88% of the minimal velocity, which elicits $\dot{V}O_{2\text{max}}$ as measured in an incremental running test. Average maximal endurance at $\dot{V}O_{2\text{max}}$ is predicted to be 603 s in a total endurance time of 1024 s at this velocity.

Conclusion: Endurance time at $\dot{V}O_{2\text{max}}$ can be realistically modeled by a curve, which permits estimation of several parameters of interest; such as the minimal running velocity sufficient to elicit $\dot{V}O_{2\text{max}}$, and that velocity for which endurance at $\dot{V}O_{2\text{max}}$ is the longest. Key Words: ANAEROBIC CAPACITY, CRITICAL VELOCITY, MINIMAL $\dot{V}O_{2\text{max}}$ VELOCITY, MODELING, OXYGEN UPTAKE, SLOW COMPONENT

The relationship between power output and endurance time is a fertile area for the study of human bioenergetics and work performance. For two recent reviews, consult Billat et al. (2) and Morton and Hodgson (25). With very few exceptions, this research has focused on endurance at constant powers, where the critical power (CP) concept (16) has been by far the most commonly adopted model. It has been widely studied and adapted for swimming, running, rowing, cycling, kayaking, and wheelchair exercise. Nevertheless, it is not without its critics (31).

For some of these exercise modalities, power output can be measured directly on an ergometer. However, for running, swimming, and wheelchair exercise, velocity and distance take the place of power and work, respectively, with corresponding changes to the units of measurement of the parameters of the model. It would be useful if a single forcing variable could be found, one which is independent of exercise modality and which could be used in a totally general setting. Oxygen uptake may be one such candidate.

Oxygen uptake, however, is not a simple function of power output or velocity, for it is a function of time as well. Even steady-state oxygen uptake is not a linear function of power output beyond a certain level. The slow component of oxygen uptake and increasing oxygen cost of exercise at higher powers complicates the issue (14). The slow component has, however, been successfully modeled, both theoretically (22) and empirically (1); and the energy cost of running can safely be assumed constant (or very nearly so) provided the power or velocity range is narrow. These models are not mathematically simple. Perhaps then these difficulties can be largely overcome by considering endurance at a fixed value of oxygen uptake, say at its maximum ($\dot{V}O_{2\text{max}}$).

The power range that will bring on exhaustion in a finite time can be divided into three domains. Power output may be high, that is higher than CP but insufficient to elicit $\dot{V}O_{2\text{max}}$. It may be very high or maximal, sufficient to drive $\dot{V}O_2$ to its maximum before exhaustion. Or it may be extreme, such that the subject becomes exhausted before sufficient time has elapsed for $\dot{V}O_2$ to reach its maximum. Indeed, the minimum power or velocity just sufficient to elicit $\dot{V}O_{2\text{max}}$ before exhaustion in a subject, and endurance time at $\dot{V}O_{2\text{max}}$, are two phenomena of current interest to exercise physiologists, sports coaches, and athletes in training.

The relationship between power output and total endurance has been modeled over the whole power range above CP as referred, but modeling endurance at $\dot{V}O_{2\text{max}}$ is restricted to the narrower mid-range. Given what is already known about the human exercise response, it should be possible to model this latter relationship, perhaps in a similar way to modeling endurance at constant power. To our
knowledge, this has never been accomplished, and it is the purpose of this paper to take a tentative step forward in this modeling process.

THE SIGNIFICANCE OF THE MINIMAL VELOCITY AND THE RANGE OF VELOCITIES THAT ELICIT VO\(_{2}\)MAX

Over 75 yr ago, Hill and Lupton (15) recognized that VO\(_2\) reached its maximum “... for speeds beyond about 256 meters per minute.” At higher speeds, the oxygen requirement is higher but cannot be satisfied. This minimal velocity Volkov et al. (32) called “critical speed,” not to be confused with the critical power concept mentioned above. Volkov et al. investigated endurance at this critical speed as a means of assessing maximal aerobic capacity. It was Daniels et al. (10) who introduced the term “velocity at VO\(_{2}\)MAX,” and the abbreviation “vVO\(_{2}\)max,” reporting it as a useful variable that combined VO\(_{2}\)MAX and running economy into a single factor that showed good potential for identifying aerobic differences between various runners or categories of runners.

Time to exhaustion at vVO\(_{2}\)max is reproducible in any one subject, but there is great variability between subjects even when the coefficient of variation for VO\(_{2}\)max is low (4). It seems that the lactate threshold, which is correlated with time to exhaustion at vVO\(_{2}\)max, can explain these differences, though the role of the anaerobic contribution is not negligible (13). An inverse relationship has been found between vVO\(_{2}\)max and VO\(_{2}\)max itself, and a positive relationship between vVO\(_{2}\)max and the velocity at the lactate threshold expressed as a fraction of vVO\(_{2}\)max (5). These results are similar for different sports (6). Several other studies confirm the value of vVO\(_{2}\)max and time to exhaustion at this velocity when analyzing the performances of runners over distances from 1500 m to the marathon (6,11,21,26).

However, as indicated in the introduction, at velocities above that corresponding to the time-velocity asymptote (critical velocity), a slow component of VO\(_{2}\) kinetics becomes manifest maybe as much as 60 or more seconds after exercise onset (14,34).

One obvious consequence of the slow component response is that it creates a range of velocities, all of which elicit VO\(_{2}\)max provided exercise is continued to exhaustion. Thus the so-called “velocity associated with VO\(_{2}\)max” defined as the minimal velocity that elicits VO\(_{2}\)max for incremental exercise (3) would not be the sole velocity that elicits VO\(_{2}\)max. Indeed, VO\(_{2}\)max can be elicited during constant power exercise over a range of intensities that may be higher or lower than the minimal value for which it occurs during incremental exercise (33). However, in that range of exercise intensities, there must be one value which would allow the longest endurance at VO\(_{2}\)max, which by definition could be the asymptote of the time at VO\(_{2}\)max−velocity relationship. Because the time-velocity relationship is strong for high-intensity exercise that leads to exhaustion within 1–30 min (14), we could use four all-out runs, say at 90, 100, 120, and 140% of vVO\(_{2}\)max to determine the asymptote.

In a recent study (7), where the purpose was to determine the velocity which permits the longest endurance at vVO\(_{2}\)max, it was calculated by the slope of the distance/time regression line obtained from four such runs. This study reported that this velocity was not significantly different from that determined in a 3-min stage incremental protocol in six physical education student subjects. This velocity was higher than the critical velocity computed using total distance and time. This could be explained by the observation that five of the six subjects did not reach VO\(_{2}\)max at 90% of vVO\(_{2}\)max, leading to a very low average for endurance times at VO\(_{2}\)max in the 90% runs. That is, times and distances at VO\(_{2}\)max in these four runs used to determine the minimal velocity which elicits VO\(_{2}\)max (by allowing the slow component to reach VO\(_{2}\)max) were shorter than total times and distances to exhaustion at these velocities. Times at VO\(_{2}\)max were also much lower for the 120 and 140% runs (73 s and 18 s, respectively). Hence, the critical velocity calculated only with times and distances at VO\(_{2}\)max was not significantly different from the velocity that elicits VO\(_{2}\)max determined in the incremental protocol.

This result was in accordance with Monod and Scherrer (20), who originally considered that the critical velocity corresponded to a power output at VO\(_{2}\)max. In the same way, Ettema (12) considered that the critical velocity was close to the velocity corresponding to the maximal oxygen uptake in world class runners. In one sense they were right, accepting the fact that to be true only the time spent at VO\(_{2}\)max for each power output must be taken into account and that it is impossible to sustain this velocity indefinitely.

Indeed, the main criticism of the two-parameter critical power model is the assumption that the critical (aerobic) power, i.e., VO\(_{2}\)max, is attained at the very onset of work. This flaw is avoided when the distance is plotted versus the time, only after VO\(_{2}\)max is actually attained.

The interest in the velocity which permits VO\(_{2}\)max to be sustained the longest time, is the belief that it could be a good intensity to train at for middle and long distances (3,8). However, further research is required to determine and understand this velocity, using velocities closer to vVO\(_{2}\)max (95, 100, 105, and 110% of vVO\(_{2}\)max, for example). Indeed, a slow component of VO\(_{2}\) could appear at 95% of vVO\(_{2}\)max and would induce a decrease of the critical velocity calculated with the longest time at VO\(_{2}\)max only. Therefore, the critical velocity could be the velocity which elicits the longest time at VO\(_{2}\)max. This definition could allow clarification of the critical velocity concept and delineation of the range of velocities for which a VO\(_{2}\) slow component appears, helping in further studies to elucidate its underlying mechanisms.

METHODS

Model background. Quite apart from any philosophical arguments concerning the CP concept itself, there are several practical ones to consider. Several of these are
discussed by Vandewalle et al. (31). It is of value in setting the scene for modeling endurance at \(\dot{V}O_{2\text{max}} \) to recall the more relevant of these.

It has been clearly shown that when subjects have their endurance at CP (as estimated from the model) tested, they are seldom able to endure for 1 h, often much less (17–19,27). Certainly this falls well short of the “infinitely” long endurance predicted by the model. As a consequence, the work-time relationship is not linear but curved downward, and the resulting parameter estimates depend on the selection of powers for the experimental determination of CP (9).

At the other extreme, the CP model predicts an infinitely high power as endurance time shrinks to zero. Clearly this cannot be so, as the concept of maximal anaerobic power is well established (30). Some finite maximal “instantaneous” power must exist, beyond which no work can be performed and endurance time is zero.

As a consequence, one can deduce that some self-preservation control system must be in operation, and that the assumption of the CP model that at exhaustion all of the anaerobic capacity has been consumed, is erroneous. Indeed, Saltin and Karlsson (29) have clearly demonstrated the existence of significant anaerobic reserves at exhaustion at various power outputs.

All of the above difficulties have already been overcome by the adoption of a linear control system for power output based on the extent to which the anaerobic capacity has been consumed. The resulting three-parameter critical power model is fully discussed by Morton (24). Nevertheless, two further practical difficulties remain.

First, the adjustment of oxygen delivery to the working muscles as required by the exercise, is not instantaneous as assumed by the CP model. In fact it may take 2 or 3 min to reach the required level. Wilkie (35) has recognized this problem, though his formulation has other difficulties in common with the CP model. Peronnet and Thibault (28) also recognized this problem, as well as a declining ability to sustain power output at high fractions of \(\dot{V}O_{2\text{max}} \). Their model, however, does contain several arbitrary components, and is not simple. Second, and perhaps most problematic of all, the anaerobic reserves are not comprised of a single component, but at least two, accessible through different metabolic pathways. The three-component hydraulic model of human bioenergetics proposed by Morton (22) has addressed both these problems. The former is straightforward to overcome, but the latter adds significant complexity to the modeling. Nevertheless, this model has been extended to investigate maximum power and endurance by the introduction of a control system (23).

The approach taken in this paper is therefore to construct a model (see Appendix), building on the previous work of several authors, which represents an energy demand and supply system with the following properties:

- It is based on the two component aerobic and anaerobic critical power concept adapted to running.
- It incorporates a linear control system for power output, dependent on the amount of anaerobic reserve consumed.
- Aerobic energy supply adjusts as a response with single fast exponential kinetics up to the level of critical power.
- It incorporates the slow component (a second exponential), which drives \(\dot{V}O_2 \) beyond the equivalent of CP toward \(\dot{V}O_{2\text{max}} \).

In so doing, endurance time both in total and at \(\dot{V}O_{2\text{max}} \) can be modeled as a system with six parameters. They are the anaerobic distance capacity (\(\alpha \)); critical velocity (CV); maximal “instantaneous” velocity (\(V_{\text{max}} \)); the minimal velocity sufficient to elicit \(\dot{V}O_{2\text{max}} \) (\(V_{\text{vm}} \)); and two kinetic rate parameters for the fast (\(r_1 \)) and slow (\(r_2 \)) components of oxygen uptake.

Important assumptions. A number of assumptions are inherent in the preceding discussion and in the basis on which the model is constructed as described above. Two of these deserve particular mention.

We assume that at the time \(\dot{V}O_2 \) reaches the equivalent of CV, the primary exponential component is just complete, or very nearly complete, at which point the slow component of \(\dot{V}O_2 \) begins. This assumption allows \(\dot{V}O_2 \) above the equivalent of CV to be treated as a single slow rate exponential process with delay, thus simplifying the mathematics significantly. For the theoretical model of Morton (22) and its empirical verification by Barstow and Molé (1), this seems to be fairly reasonable, as the time of commencement of the slow component occurs part way into the exercise. However, for extremely high exercise levels, \(\dot{V}O_2 \) may reach the equivalent of CV quite quickly, say within 30 s or less. In such cases, the degree of simplification our model assumes becomes more important, though this is irrelevant if exhaustion occurs before \(\dot{V}O_{2\text{max}} \) is reached.

We also assume that once \(\dot{V}O_2 \) reaches the equivalent of CV, the contribution of the aerobic power source to the requirement of exercise stabilizes at this level. This derives directly from the usual interpretation of the critical power concept. This is despite the fact that the slow component may drive \(\dot{V}O_2 \) significantly beyond the equivalent of CV. In other words, the contribution which the slow component of \(\dot{V}O_2 \) makes does not enter into energy supply/demand considerations. Indeed Barstow and Molé (1) conjecture whether the slow component “...represents some energy consuming function that is ancillary to, or even completely separate from, contraction.” We assume that it does. If it does not, then the critical power concept needs major reinterpretation.

The full model development, including a glossary of terms is detailed in the Appendix.

Subjects. Ten physically active male subjects (mean ± SD, age 26.4 ± 4.7 yr, weight 79.1 ± 4.5kg, \(\dot{V}O_{2\text{max}} \) 59.3 ± 5.0 mL·kg\(^{-1}\)·min\(^{-1}\)) volunteered for this study. Each subject was familiar with the experimental procedures before the study, and all gave their written informed consent to participate in accordance with the French National Committee for Clinical Research.

Laboratory procedures. Subjects reported to the laboratory fasted and hydrated on five occasions. On the first occasion, \(\dot{V}O_{2\text{max}} \) and \(v\dot{V}O_{2\text{max}} \) were measured using an incremental test protocol on a treadmill (Gymrol...
1800). At the start, speed was set at 12 km\(\cdot\)h\(^{-1}\) (0\% slope) and was increased by 2 km\(\cdot\)h\(^{-1}\) every 3 min up to 80\% of their running speed in a 1.5-km race and by 1 km\(\cdot\)h\(^{-1}\) every 3 min, thereafter, until exhaustion. The criteria used for \(\dot{V}O_2\text{max}\) were a plateau in \(\dot{V}O_2\) despite increasing running speed, a respiratory exchange ratio above 1.1, and HR above 90\% of the age-predicted maximum. \(v\dot{V}O_2\text{max}\) was the lowest running velocity that elicited \(\dot{V}O_2\text{max}\) as defined. The four endurance tests at 90, 100, 120, and 140\% of \(v\dot{V}O_2\text{max}\) were subsequently performed in random order for each subject at sessions separated by at least 1 wk. At each, after a 5-min warm-up at 60\% of \(v\dot{V}O_2\text{max}\), speed was quickly increased (over less than 20 s) up to the required velocity. Subjects were verbally encouraged to run to exhaustion. The total endurance time and distance covered together with the endurance time, and distance covered at \(\dot{V}O_2\text{max}\) were recorded at each session for each subject.

RESULTS AND DISCUSSION

Table 1 lists individual results from all 10 subjects. For six subjects, 90\% of their \(v\dot{V}O_2\text{max}\) as measured on the incremental test was insufficient to elicit their individual \(\dot{V}O_2\text{max}\). For two of these, and one other, 140\% of their \(v\dot{V}O_2\text{max}\) brought on exhaustion before their \(\dot{V}O_2\text{max}\) could be attained. Those three subjects who were able to reach their \(\dot{V}O_2\text{max}\) on all four tests, produced data which appeared skew, with endurance at 90\% much longer than at any other percentage.

Equation 6 for endurance time at \(\dot{V}O_2\text{max}\) (see Appendix) contains six parameters, but it can be parameterized more simply as

\[
t_a = \frac{a}{(V - b)} + cln(1 - d(\dot{V} - b)) - e
\]

which contains only five independently estimable parameters (the original formulation contains one redundant parameter). However, because there are at most four nonzero data points for any one subject, this equation cannot be fitted for each subject, and so the data must be pooled over subjects. Furthermore, we note that equation 4 for total endurance time (see Appendix) contains four parameters.

MAXIMAL ENDURANCE TIME AT \(\dot{V}O_2\text{max}\)

TABLE 1. Individual total times and distances run during the all-out runs at 90, 100, 120, and 140\% of \(v\dot{V}O_2\text{max}\), and specific times and distances run at \(\dot{V}O_2\text{max}\).
subjects were used. Skewed data was omitted, and 47 data points from seven subjects is estimated as 7687.1 (76.87 s), which corresponds to an anaerobic distance capacity of about 360m; CV is estimated as 81.5% of vVO$_{2\text{max}}$ (incremental) or about 3.82 ms^{-1}; V$_{\text{vm}}$ is estimated as 89.5% of vVO$_{2\text{max}}$ (incremental) or about 4.20 ms^{-1}; V$_{\text{max}}$ is estimated as 208% vVO$_{2\text{max}}$ (incremental), which corresponds to a velocity of about 9.75 ms^{-1}, r$_1$ is estimated as 0.167 s$^{-1}$, which corresponds to a rather rapid time constant of 6 s; and r$_2$ is estimated as 0.00419 or a time constant of 239 s.

Of most interest here perhaps is the observation that the estimate of vVO$_{2\text{max}}$ (incremental) is larger by about 10%, than the fitted V$_{\text{vm}}$. Because incremental velocity steps are in 1 or 2 kmh^{-1}, this is perhaps not surprising. Indeed, from Table 1 the average observed vVO$_{2\text{max}}$ for these seven subjects is 4.68 ms^{-1}, and the earlier fitted value of 4.0 ms^{-1} is a slightly lesser 85.4% of this.

Data from three subjects were omitted, because of uncommonly long endurance times at 90% of vVO$_{2\text{max}}$. If these were to be plotted on Figure 1, the skewness would be obvious. However, in view of the above discussion, the effect of their inclusion should be investigated. This was done in a joint fit of equations 4 and 6 now utilizing all 71 nonzero data points in Table 1, for both velocity and % vVO$_{2\text{max}}$ as independent variables. Fitting velocity against endurance times provides a slightly better fit than before, $R^2 = 0.768$ ($P < 0.001$) with a standard error of estimate of 145.3 s. The fitted parameters are $\alpha = 914$ m, CV = 3.35 ms^{-1}, r$_1 = 0.0128$ ms^{-1}, V$_{\text{vm}}$ = 3.36 ms^{-1}, r$_2 = 0.000106$, and V$_{\text{max}}$ = 7.98 ms^{-1}.

![Figure 1—Endurance data and jointly fitted curves for seven subjects. This figure shows individual endurance times (both total and at VO$_{2\text{max}}$) versus running velocities for subjects 1, 2, 4, 6, 7, 9, and 10, together with fitted model curves for this group. Open symbols and dotted fit are for total endurance times, closed symbols and solid fit are for endurance times at VO$_{2\text{max}}$. Goodness of fit and estimated parameters are as given in the text.](Image 47x578 to 275x743)

![Figure 2—Endurance data and jointly fitted curves for 10 subjects. This figure shows individual endurance times (both total and at VO$_{2\text{max}}$) versus % vVO$_{2\text{max}}$ for all 10 subjects; together with fitted model curves for the whole group. Open symbols and dotted fit are for total endurance times, closed symbols and solid fit are for endurance times at VO$_{2\text{max}}$. Goodness of fit and estimated parameters are as given in the text.](Image 311x118 to 539x274)
Fitting $v_{VO_{2max}}$ against endurance times yields a still better fit, $R^2 = 0.821$ ($P < 0.001$) with a standard error of estimate of 127.6 s. The fitted parameters are $\alpha = 89.01$ s corresponding to 416m, $\alpha = 81.4\%$ $v_{VO_{2max}}$ corresponding to 3.81 m s$^{-1}$, $r_1 = 0.0535$ s$^{-1}$ corresponding to a time constant of 18.7 s, $V_{vm} = 86.5\%$ $v_{VO_{2max}}$ corresponding to 4.05 m s$^{-1}$, $r_2 = 0.0034$ corresponding to a time constant of 292.7 s, and $V_{max} = 203.7\%$ of $v_{VO_{2max}}$ corresponding to 9.53 m s$^{-1}$. These, as a collection of values, are more coherent than the former. These fitted equations are plotted together with the full data set in Figure 2. The increased skewness of the curve for endurance time at VO_{2max} is immediately apparent by comparison with Figure 1. The maximal endurance time at VO_{2max} is predicted as 603 s for a running velocity of 4.11 m s$^{-1}$ being 87.9% of $v_{VO_{2max}}$ (incremental).

CONCLUSIONS

We have agreed that there must exist some running velocity in the range of velocities that elicit VO_{2max}.

REFERENCES

which permits maximal endurance at VO_{2max}. Indeed, we have shown that whereas total endurance time plotted against velocity displays a hyperbolic shape, endurance time at VO_{2max} plotted against velocity displays a maximum. The bioenergetic process that produces such joint data has been modeled, producing a skewed curve for endurance at VO_{2max}, which does have a single maximum. This model has been successfully fitted to endurance data, both in total and at VO_{2max}, obtained from a group of 10 subjects. We find that the fitted minimal velocity to elicit VO_{2max} is some 10–13% below that estimated from an incremental test and that maximal endurance at VO_{2max} is achieved running at not much above this fitted value.

The work of the first author has been made possible through the support of the Centre de Medecin du Sport, CCAS, Paris. Address for correspondence: R. Hugh Morton. Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand; E-mail: H.Morton@massey.ac.nz.

APPENDIX

Glossary

AC Anaerobic capacity, usually expressed in joules, but here expressed as its distance equivalent, m.

α The value of AC when the subject is fully rested and nourished, m.

CP Critical power, W.

CV Critical velocity, m·s⁻¹.

e The dimensionless exponential constant.

ln The natural logarithm to the base e.

r₁ The rate constant for the primary component of oxygen uptake kinetics, s⁻¹.

r₂ The rate constant for the slow component of oxygen uptake kinetics, s⁻¹.

t The general time variable, s.

ta The endurance time at VO₂max, s.

tc The time taken for the primary component of oxygen uptake to reach the equivalent of CV, s.

V The constant velocity required of any given exercise bout, m·s⁻¹.

V max The maximal velocity achievable by the subject when fully rested and nourished, m.

V m The maximal velocity that could be attained when the anaerobic capacity is less than α, m·s⁻¹.

V O₂ Oxygen uptake above rest, usually expressed in L·min⁻¹ or mL·kg⁻¹·min⁻¹, but here expressed as its velocity equivalent, m·s⁻¹.

V O₂max Maximal oxygen uptake, L·min⁻¹ or mL·kg⁻¹·min⁻¹.

V vm The estimated minimal velocity that would drive VO₂reach VO₂max as measured in an incremental test, m·s⁻¹.

V)vO₂max The minimal velocity that would drive VO₂ to reach VO₂max as measured in an incremental test, m·s⁻¹.

Linear control system. Morton (23,24) has conjectured that the maximal velocity that could be developed by a subject at any instant is controlled by the anaerobic capacity available at that instant, although it recognized that other causes of local fatigue may be involved. Specifically, this maximum, V m, declines linearly from V max, the maximal instantaneous velocity when fully rested and nourished, to CV, the critical velocity, as the available anaerobic capacity declines from its replete value α to zero.
That is

\[V_m = CV + \left(\frac{V_{max} - CV}{\alpha} \right) AC \]

(1)

Exhaustion is precipitated and therefore endurance time determined when AC declines to such a value that \(V_m \) just equals the velocity required, \(V \). Thus we must first determine AC as a function of time spent at the velocity \(V \), substitute in equation (1) when \(V_m = V \), and solve for \(t^* \), the endurance time at \(V \).

Total endurance time at very high velocity. Upon commencement of exercise at velocity \(V \), the aerobic supply, \(VO_2 \), rises monoexponentially toward the oxygen requirement of \(V \) with a rate constant \(r_1 \). That is

\[VO_2 = V(1 - e^{-rt}) \]

It is conceivable that \(V \) may be so high that exhaustion occurs before \(VO_2 \) reaches the equivalent of \(CV \). That is for

\[0 < t^* \leq t_c = \frac{-\ln\left(1 - \frac{CV}{V}\right)}{r_1} \]

(2)

Where \(t_c \) is the time required for \(VO_2 \) to reach the equivalent of \(CV \).

The energy supply/demand relationship in such a case can be represented by Figure A1.

From this figure, we note that AC at \(t^* \) is given by

\[\alpha = \left[\frac{\alpha}{r_1} \right] - \left(V - CV \right) dt = \alpha - \frac{V}{r_1} (1 - e^{-rt}) \]

Thus, using the linear control system of equation (1)

\[V = CV + \left(\frac{V_{max} - CV}{\alpha} \right) \left(\alpha - \frac{V}{r_1} (1 - e^{-rt}) \right) \]

MAXIMAL ENDURANCE TIME AT \(VO_{2max} \)

which can be solved for \(t^* \) to yield

\[t^* = \frac{-\ln\left(1 - \frac{r_1\alpha(V_{max} - V)}{V(V_{max} - CV)}\right)}{r_1} \]

(3)

This of course only applies for \(0 < t^* \leq t_c \) given by equation (2), that is for a range of velocities \(V \), where

\[V_{max} - \frac{CV(V_{max} - CV)}{r_1\alpha} \leq V < V_{max} \]

Total endurance time at high velocity. Suppose the velocity required \(V \), lies in the range

\[CV < V \leq V_{max} - \frac{CV(V_{max} - CV)}{r_1\alpha} \]

which ensures \(VO_2 \) reaches the equivalent of \(CV \) at time \(t_c \) prior to exhaustion. The energy supply/demand relationship in this case can be represented by Figure A2.

Area 1, expressed in meters, is given by

\[CVt_c = \int_0^{t_c} V(1 - e^{-rt}) dt = CVt_c = \frac{CV}{r_1} - t_c(V - CV) \]

More simply, area 2 is given by \((V - CV)t_c\), and we note that areas 1 and 2 sum to a constant, \(CV/r_1 \) independent of \(V \).

Area 3 is given by \((V - CV)(t^* - t_c)\). From Figure A2, we note that AC at \(t^* \) is now given by

\[\alpha - CV \left(\frac{V_{max} - CV}{\alpha} \right) \left(\frac{V}{r_1} - (V - CV)(t^* - t_c) \right) \]

Thus applying the control system of equation (1),

\[V = CV + \left(\frac{V_{max} - CV}{\alpha} \right) \left(\alpha - CV \left(\frac{V_{max} - CV}{\alpha} \right) \left(\frac{V}{r_1} - (V - CV)(t^* - t_c) \right) \right) \]

Substituting for \(t_c \) from equation (2) and solving, yields

Figure A3—Oxygen uptake and energy supply/demand showing time at \(VO_{2max} \). For a constant velocity of 5.5 m s\(^{-1}\), this figure shows oxygen uptake first rising rapidly to the equivalent of a \(CV \) of 3 m s\(^{-1}\) by 23.65 s. This is followed by the slow component, driving it further, reaching \(VO_{2max} \) at an equivalent of 4.5 m s\(^{-1}\) by 106.1 s. Thereafter, oxygen uptake remains constant at \(VO_{2max} \) until exhaustion at 132.1 s. Energy supply/demand features in this illustration are exactly analogous to those of Figure A2.

Figure A4—Model illustration. This figure shows graphical traces of the total endurance time (dotted line) and endurance time at \(VO_{2max} \) (solid line) as a function of velocity. The equations and parameter values are as given in the text, with \(CV = 3 \) m s\(^{-1}\) shown in the figure by the vertical dashed line. Maximal endurance time at \(VO_{2max} \) is 27.8 s, occurring at \(V = 5.24 \) m s\(^{-1}\) with corresponding total endurance time of 153.33 s.
We note that if \(\text{VO}_2 \) was regarded as adjusting instantaneously to \(CV \), then \(r_1 \to \infty \) as is the case in the standard critical velocity model, then equation 4 reduces to

\[
t^* = \frac{-\ln \left(1 - \frac{CV}{V} \right)}{r_1} + \frac{\alpha - \frac{CV}{r_1}}{\frac{V - CV}{V_{\text{max}} - CV}} \ln \left(\frac{V_{\text{max}} - CV}{V - CV} \right)
\]

which is exactly the equivalent of the 3-parameter critical power model of Morton (24).

Endurance time at \(\text{VO}_2^{\text{max}} \). Above \(CV \), when the first exponential rise in \(\dot{\text{VO}}_2 \) is just complete or very nearly complete, the second, or slow component of oxygen uptake enters the model (1,14). \(\dot{\text{VO}}_2 \) will rise above the equivalent of \(CV \) but may not necessarily rise to reach \(\dot{\text{VO}}_2^{\text{max}} \). In either case, its contribution to the aerobic energy supply is assumed to remain at \(CV \) as conjectured by Barstow and Molé (1). \(\dot{\text{VO}}_2 \) may not reach \(\dot{\text{VO}}_2^{\text{max}} \) either because at high velocity the subject becomes exhausted too soon or because the \(\dot{\text{VO}}_2 \) equivalent of the exercise is below \(V_{vm} \). In cases where \(\dot{\text{VO}}_2 \) does reach \(\dot{\text{VO}}_2^{\text{max}} \), the time taken in getting there must be subtracted from the total endurance time in order to obtain the time at \(\dot{\text{VO}}_2^{\text{max}} \).

Figure A3 shows the oxygen uptake kinetics, together with energy supply/demand features as shown in Figure A2.

We have already seen that the time taken for \(\dot{\text{VO}}_2 \) to reach the equivalent of \(CV \) is given by \(t_c \) derived from equation 1. From Figure A3, we note that for the slow component

\[
(V_{vm} - CV) = (V - CV)(1 - e^{-t_a/t_{vm}})
\]

which yields

\[
t_m = t_{vm} + t_a
\]

Hence, because \(t^* = t_m + t_a \), equations 4 and 5 yield

\[
t_a = \frac{\alpha - \frac{CV}{r_1}}{\frac{V - CV}{V_{\text{max}} - CV}} \ln \left(\frac{V_{\text{max}} - CV}{V - CV} \right)
\]

The limits of \(V \) between \(V_m \) and \(V_{\text{max}} \) for which \(t_a = 0 \) and between which \(t_a > 0 \), can be found by solving

\[
\frac{\alpha - \frac{CV}{r_1}}{\frac{V - CV}{V_{\text{max}} - CV}} \ln \left(\frac{V_{\text{max}} - CV}{V - CV} \right) = \frac{\alpha}{\frac{V - CV}{V_{\text{max}} - CV}}
\]

It will be noted that this admits two solutions, the lower of which is a little greater than \(V_{vm} \), and the upper somewhat less than \(V_{\text{max}} \).

Illustration. Suppose \(\alpha = 500 \) m, \(CV = 3 \) m\(\text{s}^{-1} \), \(V_{\text{max}} = 12 \) m\(\text{s}^{-1} \), \(V_{vm} = 4.5 \) m\(\text{s}^{-1} \), \(r_1 = 1/30 \) s\(^{-1} \), and \(r_2 = 1/90 \) s\(^{-1} \). These values do not represent elite athletes. Equations 3, 4, and 6 are given by

\[
t^* = -30\ln \left(1 - 1.852 \left(\frac{12 - V}{V} \right) \right) \quad \text{for} \ 10.38 < V \leq 12 \text{ m\(\text{s}^{-1} \)}
\]

\[
= -30\ln \left(1 - \frac{3}{V} \right) + \frac{410}{V - 3} - 55.56 \quad \text{for} \ 3 < V \leq 10.38 \text{ m\(\text{s}^{-1} \)}
\]

\[
= \frac{410}{V - 3} - 55.56 + 90\ln \left(1 - \frac{1.5}{V - 3} \right) \quad \text{for} \ 7.41 < V \leq 7.41 \text{ m\(\text{s}^{-1} \)}
\]

These curves are depicted in Figure A4.