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Abstract
The ‘‘Critical Power’’ (CP) model of human bioenergetics provides a valuable way to identify both limits of tolerance to
exercise and mechanisms that underpin that tolerance. It applies principally to cycling-based exercise, but with suitable
adjustments for analogous units it can be applied to other exercise modalities; in particular to incremental ramp exercise. It
has not yet been applied to decremental ramps which put heavy early demand on the anaerobic energy supply system. This
paper details cycling-based bioenergetics of decremental ramps using 2- and 3-parameter CP models. It derives equations
that, for an individual of known CP model parameters, define those combinations of starting intensity and decremental
gradient which will or will not lead to exhaustion before ramping to zero; and equations that predict time to exhaustion on
those decremental ramps that will. These are further detailed with suitably chosen numerical and graphical illustrations.
These equations can be used for parameter estimation from collected data, or to make predictions when parameters are
known.
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Introduction

The ‘‘Critical Power’’ (CP) model is a two-compo-

nent supply and demand systems model of human

bioenergetics, principally cycling-based. Supply is

determined by the endogenous properties of the

model system, and demand is determined exogen-

ously. In its original 2-parameter form it has four

basic assumptions: 1) There are only two compo-

nents to the energy supply system for human

exercise, termed aerobic and anaerobic; 2) The

aerobic supply component is rate but not capacity

limited. In cycling, this rate limiting intensity

parameter is termed ‘‘critical power’’ and is denoted

by CP, measured in watts (W); 3) The anaerobic

supply component conversely is capacity but not rate

limited. This capacity limiting parameter is termed

‘‘anaerobic work capacity’’ and is denoted by AWC,

measured in joules (J); and 4) Exercise can continue

at any power output P 4 CP until AWC is

exhausted.

It can easily be deduced that for any constant

power, P 4 CP, the duration of exercise, t,

measured in seconds (s), is given by the rectangular

hyperbolic equation:

t ¼ AWC=ðP � CPÞ ð1Þ

In this form CP is the vertical asymptote of the

hyperbola and AWC its curvature constant.

The original formulation of the CP model is

attributable to Monod and Scherrer (1965) who,

while studying isolated muscle exercising at fixed

intensities until exhaustion, reported a linear rela-

tionship between total external mechanical work

done Wk, and the time taken to do that work.

Knowing that Wk ¼ P.t, it can readily be noted that

this linear equation must be:

Wk ¼ AWC þ CP :t ð2Þ

and that it is algebraically equivalent to the hyper-

bolic model equation (1) above. There are in fact six

algebraically equivalent model equations linking P, t

and Wk in pairs. The CP model has been extended,

using appropriate rate and capacity units, to whole-
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body exercise in other modalities such as running

and swimming, and other formats (fixed intensity,

incremental ramp, and intermittent). See Hill

(1993), Morton and Hodgson (1996), Billat, Koral-

stein, and Morton (1999), Morton (2006), and

Jones, Vanhatalo, Burnley, Morton, and Poole

(2010) for reviews.

The 3-parameter CP model (Morton, 1996)

invokes a feedback loop which, in place of assump-

tion 4, assumes that in cycling, the maximum

voluntary external power output (MVP) at any

instant, and in a range between CP and a finite

maximum Pmax, is directly proportional to the

existing anaerobic capacity at that same instant.

Clearly, exercise can continue as long as power

demand is less than this voluntary maximum, but

exhaustion (termination of exercise) occurs at the

moment when the anaerobic capacity has declined to

the point that the maximum voluntary power just

equals the demand. It turns out that the solution to

the system for constant power P produces another

hyperbolic equation:

t ¼ AWC=ðP � CPÞ þ k ð3Þ

In this formulation k 5 0 is the horizontal asymptote

of the hyperbola, and 7k is the MVP proportionality

constant, measured in seconds. It is more intuitively

appealing to physiologists to note that the intercept

of the hyperbola on the horizontal axis when t ¼ 0 is

Pmax, which can be interpreted as a ‘‘maximum

instantaneous power’’. Of course for any P 4 Pmax

no physical work is possible simply because the

individual is not strong enough. This permits a

reparameterisation to:

t ¼ AWC=ðP � CPÞ þ AWC=ðCP � PmaxÞ ð4Þ

where k ¼ AWC/(CP - Pmax) or Pmax ¼ CP – AWC/

k.

All equations apply for P constant, with CP 5
P 5 Pmax. Note that when Pmax!?, k! 0 (or vice

versa) and the 3-parameter equations reduce to their

2-parameter counterparts.

The incremental ramp exercise format, in which

intensity increases linearly with time from a low or

more usually zero start, is of particular

interest because of its widespread use in exercise-

tolerance testing. The original theoretical CP

model development for incremental ramps by

Morton (1994) applies the 2-parameter model

only. For a ramp protocol of gradient g (W �
s71, g 4 0) from a zero start, the time to

exhaustion is given by:

t ¼ CP=g þ
p
ð2AWC=gÞ ð5Þ

The equivalent equation extended for the 3-

parameter model (Jones et al., 2010) is given by:

t ¼ CP=g þ kþ
p
ðk2 þ 2AWC=gÞ ð6Þ

Conversely, decremental ramp tests necessarily

starting from high intensity and with a negative

gradient are used less commonly. The reason for this

could simply be that little is known about them, both

theoretically and empirically. Published research on

decremental ramps tends to deal only with oxygen

uptake kinetics (Niizeki, Takahashi, & Miyamoto,

1995; Ozyener, Rossiter, Ward, & Whipp, 2011;

Yano, Yunoki, & Horiuchi, 2000). From a bioener-

getic perspective, it would therefore be valuable to

examine application of the CP model theory to

decremental ramps. In a companion paper (manu-

script in revision) we examine and compare perfor-

mance and metabolic aspects of corresponding

decremental and incremental ramps.

At the outset, it is important to realise that whereas

incremental ramp tests will always end in volitional

exhaustion of the individual, this is not necessarily so

for decremental ramps. Clearly, in cycle-based

exercise exhaustion occurs only if the starting power,

P*, is sufficiently high and/or the negative gradient is

insufficiently steep. That is to say, in the CP model

context, exhaustion of the individual will occur only

if AWC is fully exhausted (2-parameter model), or if

MVP declines to the intensity demanded by the ramp

(3-parameter model). In practice this is quite likely to

be the case.

The CP model theory and decremental ramps

The 2-parameter model

The bioenergetics of decremental ramps and deter-

mination of the boundary line separating combina-

tions of starting intensity, P* 4 CP, and ramp

gradient, g, that will or will not lead to termination

of exercise at exhaustion can be derived with

reference to Figure 1.

This shows first how intensity on the ramp (the

downward sloping solid line, Pr) declines from its

starting value P* with respect to time t:

Pr ¼ P� � g:t ð7Þ

Second, the trapezoidal area between times 0 and t,

and between CP and Pr, represents the anaerobic

energy requirement of the exercise up to time t. As

long as this amounts to less than the anaerobic work

capacity of the individual, exercise can continue, but

as soon as it amounts exactly to AWC, exhaustion

occurs. The time of exhaustion is therefore the point
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where this area equals AWC, which as indicated

above, would generally occur before Pr reaches CP.

In cycling, time to exhaustion, peak power,

maximal oxygen uptake ( _V O2max) and other such

measures associated with the ending of an incre-

mental ramp are frequently the main focus of that

exercise modality. Given that an individual starts

exercising on a decremental ramp with appropriate

starting intensity and gradient; it is possible to

determine endurance time as follows.

The trapezoidal area in Figure 1 is given by the

expression:

½ P� � CPð Þ þ P� � g:t � CPð Þ½ �:t
¼ P� � CPð Þ:t � g:t2=2

ð8Þ

that when equating to AWC yields a quadratic in t,

with the feasible solution given by:

t ¼ P� � CPð Þ=g � P� � CPð Þ=g½ �2�2AWC=g
n o1=2

ð9Þ

that defines time to exhaustion on an appropriately

chosen decremental ramp.

If however this point occurs when Pr reaches CP

exactly, exercise duration is a finite maximum and

represents the boundary condition. The previously

trapezoidal, and now triangular, area representing

the anaerobic energy requirement of the exercise up

to this time is given by the expression: ½(P* -

CP).(P* - CP)/g or (P* - CP)2/2g.

On equating to AWC, the equation of the

boundary line is therefore:

g ¼ P� � CPð Þ2=2AWC ð10Þ

or

P� ¼ CPþ 2AWC:gð Þ1=2 ð11Þ

This equation therefore allows determination of a

critical decremental gradient for any given P* (or vice

versa) for an individual with known CP and AWC. It

therefore follows that if either: g 5 (P* - CP)2/

2AWC or P* 4 CP þ (2AWC.g)1/2 exhaustion of the

individual will occur before reaching CP on the

ramp. The converse in both cases means exhaustion

will not occur and exercise will continue beyond and

below CP on the ramp, even (if allowed) until ramp

power reaches zero.

To illustrate, consider an individual with CP ¼
200 W and AWC ¼ 25,000 J exercising on a ramp

starting at 400 W and decrementing at 0.25 W �s71

(15 W � min71). Substitution in Equation (9) yields

a time to exhaustion of 136.7 s. For the same

individual, Equation (11) is given by:

P� ¼ 200 þ 50000:gð Þ1=2 ð12Þ

which is illustrated by the dotted line in Figure 2. P*

and g combinations above the line will lead to

exhaustion on a decremental ramp, whereas combi-

nations below will not. Note the location of the (400,

0.25) co-ordinate, shown by the open circle in

Figure 2.

If on the other hand Pr was to reach CP before the

area amounts to AWC, exhaustion does not occur,

and an active recovery commences. In this case,

exercise duration can be regarded as indeterminate.

Figure 1. The downward sloping solid line, Pr, represents the

power decline over time during a cycling-based decremental ramp

starting at P*. The horizontal dotted line indicates the value of CP

for the individual. The vertical dashed line indicates the indefinite

instant in time, t. The cross-hatched trapezoidal area between

times 0 and t, and between powers CP and Pr, represents the

anaerobic energy requirement of the exercise up to time t.

Figure 2. For an individual with CP ¼ 200 W and AWC ¼ 25,000

J (2-parameter model), the dotted line shows the boundary

between those combinations of starting power on the ramp, P*,

and decremental gradient, g, which will terminate in exhaustion

(above and to the left); and those combinations which will not

(below and to the right). The open circle is the example point

(400, 0.25) which would lead to termination of exercise in 136.7 s.
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It is noted in passing that Equation (11) for P* is

identical to that which defines peak power (Ppeak)

achievable on an incremental ramp of equivalent

slope starting from zero watts (Morton, 2011). This

must be so based on an assumption of symmetry.

From a practical perspective, what this means is that

CP and AWC need not necessarily be determined in

an individual beforehand, though at least one

incremental ramp test would be advisable before

performing a decremental one.

The 3-parameter model

Given the feedback characteristic of this version of

the CP concept, the modelling is a little more

complex because the anaerobic capacity at any

instant now needs to be considered, though we shall

discover that the outcome is essentially similar. As

previously, Figure 1 again applies and power on the

ramp Pr ¼ P* - g.t, but with CP 5 P* 5 Pmax.

The anaerobic capacity (AC) of the individual

starts at AWC and declines progressively over time,

obtained by subtracting the corresponding trapezoi-

dal area. That is at time t:

AC ¼ AWC � P� � CPð Þ:t þ g:t2=2 ð13Þ

The maximum voluntary power therefore will

decline correspondingly over time (see Morton,

1996) from Pmax as follows:

MVP ¼ CP � AC=k ð14Þ

or

MVP ¼ CP þ AC: Pmax � CPð Þ=AWC

¼ CP � AWC � P� � CPð Þ:t þ g:t2=2
� �

=k

ð15Þ

Exercise can voluntarily continue as long as

MVP 4 Pr, both of which are declining over time;

MVP as a quadratic starting at Pmax as in Equation

(15) and Pr linearly starting at P* as in Equation (7),

with P* 5 Pmax. If these two intersect, the first point

of intersection defines the instant of exhaustion and

termination of exercise. The time to exhaustion can

therefore be determined by simultaneous solution of

Equations (7) and (15); i.e. solve for t when:

CP � AWC � P� � CPð Þ:t þ g:t2=2
� �

=k ¼ P� � g:t

ð16Þ

As a second illustrative example, suppose an

individual has CP ¼ 200 W, AWC ¼ 20,000 J, and

k ¼ 725 s (i.e. Pmax ¼ 1000 W), and starts a

decremental ramp of gradient g ¼ 1 W �s71 at

P* ¼ 400 W. Equation (16) reduces in this example

to:

t2 � 350t þ 30; 000 ¼ 0 ð17Þ

that has two solutions: the first and feasible is at

t ¼ 150 s which defines the instant of exhaustion;

and the second (which is not feasible) at t ¼ 200 s.

This situation is depicted in Figure 3. It can be

clearly seen that if the ramp decremented just a little

more steeply (in fact for g 4 1.016 W � s71),

exhaustion would not occur and after the initial

period of high but declining intensity, a period of

active recovery ensues. Mathematically speaking,

Equation (16) would have no real solutions.

Continuing, and as described previously, the

boundary line separating combinations of P* and g

which will, or will not, lead to exhaustion on a

decremental ramp can be found when a single exact

solution to Equation (16) occurs. Being a quadratic

in t, this occurs when its discriminant is zero, i.e.

when:

k:g þ P� � CPð Þ2�4:g: k: P� � CPð Þ þ AWC½ �=2 ¼ 0

ð18Þ

which in general has terms in P*, P*2, g, g2, g.P*, and

constants. Therefore to obtain P* given g (or vice

versa) will involve solutions of this quadratic.

Figure 3. For an individual with CP ¼ 200 W, AWC ¼ 20,000 J,

and Pmax ¼ 1000 W or k ¼ 725 s (3-parameter model) on a

decremental ramp of gradient g ¼ 1 W � s71 starting at P* ¼ 400

W; solid circles show the declining power on the ramp, Pr, and

open circles show declining MVP. The point of first intersection at

t ¼ 150 s defines the instant of exhaustion and termination of

exercise. Continuation beyond this point shows what hypotheti-

cally would happen if the individual did not become exhausted.

4 R. H. Morton & V. Billat
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Continuing the example with the same individual,

Equation (18) becomes:

P�2 � 400P� þ 625g2 � 50; 000g þ 40; 000
� �

¼ 0

ð19Þ

that is illustrated by the dotted line in Figure 4.

Conclusion

For cycling, both the 2- and 3-parameter CP models

can be successfully applied to derive the bioenergetic

modelling of decremental ramps. Equations deter-

mining: a) the boundary between combinations of

starting intensity and decremental gradient that will

or will not lead to exhaustion; and b) endurance time

in combinations that will lead to exhaustion, can all

be determined. These equations can be used (where

appropriate); either to make predictions for indivi-

duals with known CP, AWC and Pmax values, or to

estimate these values using data collected from

individuals performing several decremental ramps

to exhaustion.
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