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Abstract: The marathon has been recently run in less than 2 hours by the man who ran the three 1

fastest marathons ever recorded in the span of three years, by Eliud Kipchoge the Tokyo Olympic 2

gold medals. Here we demonstrate that the best marathons were run according to a pace distribution 3

that is statistically not constant and has a pace distribution with negative asymmetry. The concept 4

of mirror race enables us to show that the sign of asymmetry is not due to sampling fluctuations. 5

We show that marathon performance depends on pacing oscillations between extreme values and 6

that even the best marathons ever run differ and can be improved upon. The utilization of extreme 7

values and oscillations allows recovery and optimization of the complementary aerobic and anaerobic 8

metabolisms. Our findings suggest new ways forward to approach the pacing for optimizing 9

endurance performance. 10

Keywords: Extreme values ; symmetry breaking; pacing strategy ; optimization 11

0. Introduction 12

For centuries, the limits of physiology and athletic records have fascinated scientists. 13

In 2019, the sub-two-hour marathon barrier was broken with a time of 1:59:40.2. In 1925, 14

Nobel laureate, Archibald Vivian (AV) Hill, published “The Physiological Basis of Athletic 15

Records” [1]. 16

Nowadays, one century later, Advances in wearable sensor technology have enabled 17

real-time measurement of physiological data during exercise ([2]). Future directions in 18

training are going to be about encouraging the marathon runner. To achieve this, we must 19

provide ways of improving satisfaction regarding training progress and with the feeling 20

that it has been optimized. The results show that according to our hypothesis We are 21

testing the hypothesis that the ideal race, with the world’s best marathon runners, can have 22

several degrees of optimization. This can be observed in Kipchoge’s last 5 marathon’s, 23

since Kipchoge ran the three fastest marathons at the time in the span of three years, and 24

even winning Olympic gold medals in the process (2016, 2021) 25

Hill’s and Kennelly’s approach to running the fastest marathon was based on the 26

constant pace paradigm. 27

In Hill’s reference to Kennelly’s 1906 paper, he stated that the ideal way to run a race 28

was not necessarily to win, but to achieve a new athletic record for the distance, and to do 29

it by running it at constant speed. Fifty years later, the physicist Joseph Keller modelled the 30

predominating view that a runner should maintain constant pace to achieve the shortest 31

time in his paper: “A theory of competitive running” [3]. To determine the optimal race 32

strategy, he used simple physics and mathematics to correlate the physiological attributes 33

of runners with world track records. He derived the optimal speed variation t 7→ v(t) by 34

formulating and solving a problem in optimal control theory. For distances greater than 35

291 meters, his theory predicted a maximum acceleration for one or two seconds, then 36
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constant speed throughout the race, until the final one or two seconds, and finally, a slight 37

slowing down. At the time, his results confirmed the recognized view that a runner should 38

maintain constant speed to achieve the shortest time (Keller, 1973). Importantly, Keller 39

admits his theory omitted several important variables, such as the up-and-down motion 40

of the limbs, internal and external resistance, the depletion of fuel, and the accumulation 41

and removal of waste products. These ideas were perhaps valid in 1925, when the fastest 42

marathon time was only 2h29min (by Albert Michelson, an average speed of 16.99 km/h, 43

Port Chester, USA). 44

In the same way, Arthur Kennelly desired to measure all points of a race. Delving 45

deeper in Kennelly’s paper: “It is to be noted that all these speeds are average speeds 46

over the courses. There is no evidence among the records to show what the speed was at 47

different points in the course. So far as concerns anything appearing in the data, the speed 48

of a runner, for example, which averages 7.17 meters per second over a 1-kilometer course, 49

might be 10 meters per second in the first part and 5 in the last part, or vice versa. Evidence 50

is lacking to show what the facts are, and they are of great importance to the science of 51

athletics. The speed of a world’s record type of trained runner might be determined at any 52

or all points of a course, either by securing a light recording chronograph on the back of 53

his belt, with a thread paid out as he ran, or by pacing the runner with a light motor-car 54

carrying an automatic speed ” ([4], p. 328). Nowadays, thanks to microchip technology, it 55

is possible to measure every point during a marathon. 56

Physiologic processes are inherently never constant. French physiologist Claude 57

Bernard wrote, in his classic book [5] that: “The use of averages in physiology and medicine 58

most often gives only a false precision to the results by destroying the biological character 59

of the phenomena.” 60

In the same way, the observed paces in a marathon are far from constant at the average 61

speed. The best marathons are run with an asymmetric distribution of paces ([6]). 62

Nowadays, it is possible to test the hypothesis that the best marathon performance is 63

run with variable pace and challenge the paradigm of constant pace. Statistically, a race is 64

run with an oscillating pace between extreme values that are inter-played by optimizing 65

fuel, recovery, and avoiding VO2 and heart rate drift. Using mathematical statistics, we aim 66

to show that an asymmetric distribution is optimal for marathon running, to delve deeper 67

into the pace distribution, and to find the exact outline of the optimal pacing signature 68

by analysing the official best world marathon performances by Dennis Kimoto (Berlin 69

2014) and Eliud Kipchoge (Monza 2017, Berlin 2018, 2019, Vienna 2019, and the Tokyo 70

Olympics Games, 2021). Furthermore previous marathon studies reported, also run in 71

actual conditions, that physiological oscillations were the subjacent of real pace variations, 72

even when the marathon pace is planned to be constant ([6]). 73

The Berlin marathons were official competitions and are official world records. While 74

Monza 2017 and Vienna 2019 were exhibition marathons accomplished with rotating pacers, 75

an electric pace vehicle, a laser beam projecting the ideal position on the road and ideal 76

conditions. At Vienna, Kipchoge ran at a consistent average pace of 2:50 minutes per 77

kilometre (4:33.5 minutes per mile) and was 11 seconds ahead of schedule halfway through 78

the marathon. He even accelerated in the final kilometre. Given that the best marathon 79

performances, including the Olympics, were run by a single man (Eliud Kipchoge), this 80

shows the possibility of adding a new dimension of running performance beyond the 81

chronometer and proposing a qualitative way of optimizing the physiological capacity 82

for running a marathon at 21 km/h. Our approach represents a powerful possibility for 83

the marathon runner to validate the optimal aspects of his/her performance. However, 84

before exploring the possibilities of providing feedback to a marathon runner, we must 85

test the consistency of such a model in Eliud Kipchoge, who is purported to have a robust 86

“ performance template.” They have shown this to be primarily related to the increased 87

confidence that the distance in question can be completed without unreasonable levels of 88

exertion or injury ([7]). This can apply to real-world conditions with the aid of mathematical 89
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modelling and wearable technology as already proposed also in the journal Nature by the 90

physicist Emig Thorsten, see [2]. 91

1. Materials and Methods 92

Our data consists of six marathon races: Berlin 2014, Monza 2017, Berlin 2018, Berlin 93

2019, Vienna 2019, and Tokyo 2021. They were performed by Dennis Kimetto, D.K. (Berlin 94

2014), Eliud Kipchoge, E.K. (Monza 2017, Berlin 2018, Vienna 2019 and Tokyo 2021), and 95

Kenenise Bekele, K.B. (Berlin 2019). 96

For a given marathon our data were collected from http://run.hwinter.de, accessed 97

on 01/09/2021. 98

The original dataset includes marathons that provide timing data for 1km race seg- 99

ments (plus the final 41–42.195km segment); the requirement for 1km segments is based on 100

the need to track changes in pacing during different stages of the marathon. The accuracy 101

of the data is, then, higher than those collected by strava from the individual GPS measure- 102

ment which depend on GPS models (between 0.47 and 1.65%, see [8]). Thus we will assume 103

our data consist of a sequence, denoted by (p) = (pi)1≤i≤42, where pi is the pace, i.e. the 104

duration measured in seconds, taken to cover the ith kilometre, all values being integers. 105

Following standard notations from the field of probability and statistics, if this se-
quence is arranged in order of magnitude and rewritten as

p(1) ≤ · · · ≤ p(42), (1)

then p(i), for 1 ≤ i ≤ 42, is called the ith order statistic (see §11.4 in [9], or §1.1 in [10]). 106

We call average pace the real number p computed from the sequence by the two
equivalent relations

p =
1

42

42

∑
i=1

pi,
42

∑
i=1

(pi − p) = 0 (2)

It is important to note that this value may differ slightly from what can be called the 107

official average pace obtained by dividing the official total time by the distance 42.195 km. On 108

our data this only occurs for for Vienna 2019. The resulting difference may, as usual, come 109

from the phenomenon of rounding error, with the result that a total of rounded numbers 110

is not equal to the rounded version of the original total. Furthermore in our case, a rather 111

precise value of the sum of the paces (minus the time taken to run the last 195 metres) is 112

known as the total time. The difference may also, in the case of a marathon, be accounted 113

for, at least partially, by a very fast, or slow pace during the last 195 metres, that are not 114

included in our measurements. 115

Since our aim is to provide computational methods for big data that have more 116

available, we will therefore describe the stages of a statistical study starting after the 117

sequence (pi)1≤i≤42 has been produced. 118

The standard deviation σ = σ(p) of the pace sequence is defined to be

σ2 =
1

42

42

∑
i=1

(pi − p)2. (3)

A coefficient of variation used extensively is Karl Pearson’s dimensionless coefficient of
variation given by

V = 100
σ

p
, (4)

and is one of the the standards for quantifying the relative pace variation. 119

In our study, a fundamental role will be played by the skewness coefficient 120

γ1 =
∑42

i=1(pi − p)3/42
{∑42

i=1(pi − p)2/42}3/2
, (5)
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see formula (3.89) in [9]. 121

Computations from our data are summarized in Table 1. The races are not listed 122

chronologically, but according to the performance and the sign of γ1. 123

It might seem, in view of the small values of V that the two performances, Vienna 2019 124

and Monza 2017, approached the uniform pace strategy. We will see, in fact, that these two 125

performances and neither the other four marathon were run uniformly. This is discussed in 126

the next paragraph. 127

2. Results 128

2.1. The pace is not uniform 129

As in everyday language, uniformity of the pace will mean for us that the race is run at 130

an approximately constant pace. Mathematically the sequence (p) is in this case, a constant, 131

or a sample of measurements drawn from a distribution highly concentrated around the 132

average pace, for example a normal distribution with mean p and very small variance. 133

Non-uniformity of the pace can be measured by the range of the observed pace
distribution, i.e. the difference between the greatest and smallest values observed, given by

r1 = p(42) − p(1). (6)

Non-uniformity of the pace may also be measured by the difference between the fastest
and the slowest 10 kilometres,

r10 =
10

∑
i=1

{p(43−i) − p(i)},

or by the difference between the fastest and the slowest half-marathon

r21 =
21

∑
i=1

{p(43−i) − p(i)} = (p(22) + p(23) + · · · p(42))− (p(1) + p(2) + · · ·+ p(21)),

Note that the well-known negative split is given by formula

r′21 =
21

∑
i=1

{p43−i − pi} = (p22 + p23 + · · · p42)− (p1 + p2 + · · ·+ p21),

so that the sum is calculated from paces ordered chronologically, whereas our sums in r21 134

is performed after reordering the paces. Our ranges are known in the field of mathematical 135

statistics as linear rank statistics. 136

The ratios
V1 =

r1

p
, V10 =

r10

10p
, V(21) =

r10

21p
(7)

are the corresponding variation coefficients for 1, 10 and 21 kilometres. The values are 137

given in Table 1. 138

In view of this Table, it is apparent that none of the six races manifests a range 139

attributable to random fluctuations about an average target speed. In other words, none 140

was run at an approximately constant pace, in spite of the fact that two of them, Monza 141

2017 and Vienna 2019 were planned to be run at a constant pace. The smallest ranges are 142

achieved (as expected at Monza) at races designed to be run at a constant pace. As a matter 143

of fact, 8 seconds, even for a non elite runner, is a significant time-difference for a single 144

kilometre, as well as 43 s for 10 kilometres. 145

The most spectacular variation occurs for Tokyo 2021’s r21, with more than 4 minutes 146

between the fastest and the slowest half-marathon in the same race. 147
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2.2. The pace is not symmetric 148

Once the spread of the pace has been shown to be significant, it is legitimate to raise 149

the issue of its shape, in particular its symmetry or lack of symmetry. 150

A first insight into the general shape of our distribution is provided by a diagrammatic 151

representation of the data, see the bar charts of grouped data in Figures 1-4 and Figure 5. 152

A striking feature shared by the six races is that they belong to the class of moderately 153

asymmetric bell-curves (see [11], §4.20 and Figure 4.7 p. 83-87): the class frequencies present 154

one maximum, and fall rapidly on one side of the maximum when compared to the other. 155

Note that for asymmetric distributions with negative skewness, the median value is 156

usually greater than the mean, which means in our case that the runner will run more 157

than half of the race with a pace above the average pace value, making the race more 158

comfortable. We discussed this aspect in [6]. 159

Statistically, we can assess that our sequences of paces do not behave as random 160

samples from populations (in the sense used in mathematical statistics, see §1.1 and Chapter 161

9 in [9]) with symmetric, for example normal, distributions. In this case γ1 would be close 162

to zero, up to sampling fluctuations. Large positive or negative values of γ1 indicate a 163

departure from normality, or symmetry. 164

To this end, we make use of Zar’s statistic denoted by z (see p. 115-116 in [12], or 165

Equations I.23 p. 21, (4.2)-(4.8) p. 227-228 in[13], restated in relations (10) − (16), to be 166

applied with n = 42). 167

In the case of a normal distribution for (p), then z, computed from our γ1, would 168

approximately follow the distribution of a standard random normal variable, denoted by 169

N (0, 1). 170

For the six races, z takes values fairly, or even significantly different from zero. A 171

positive skewness of the pace is associated with the failed performance of Monza 2017. 172

A negative skewness of the space is associated with the successful performances. 173

Furthermore, when the skewness is negative, we observe the final times are better 174

resulting in a higher (in absolute value) skewness (see Table1) 175

The skewness may also be measured in the way the range r1 splits into a left range
p − p(1) (difference between the average pace and the fastest kilometre’s pace) and a right
range p(42) − p (difference between average pace and the slowest kilometre’s pace). The
difference between these two ranges, say ∆2R, defined by

∆2R = (p(42) − p)− (p − p(1)) = p(42) + p(1) − 2p, (8)

can be seen as a measure of skewness. 176

Table 1 confirms that negative asymmetry is associated with a successful performance. 177

2.3. The sign of asymmetry is not due to random sampling fluctuations 178

Even though most distributions from the real world manifest asymmetry, we can show 179

that the negative asymmetry observed on the six registered races cannot be explained by 180

mathematical randomness, as shown by the following thought experiment (in the sense of 181

Einstein’s Gedankenexperiment). 182

If it were the case, the observation of a race would be as frequent as that of what we
call the associated mirror-race, say p∗, defined by one of the two equivalent equalities

p∗i = 2p − pi,
p∗i + pi

2
= p (1 ≤ i ≤ 42). (9)

For example for Berlin 2018, where the average pace was p ≈ 173 seconds, a kilometre run 183

in 175 seconds would be replaced in the mirror race by a kilometre run in 171 seconds. The 184

average of these two values is p = 173. 185

From the equalities

p∗i − p = −(pi − p) (1 ≤ i ≤ 42)
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and in view of (2)− (5) we infer that a race and its mirror image have the same average 186

pace (in other words they correspond to the same performance measured by the final time), 187

and opposite asymmetries as measured by γ1. In the 2018 Berlin marathon, 16, 6 and 20 188

kilometres were run at a pace smaller, equal, or greater than the average p. In other words 189

it, 16 kilometres were ran fast, 6 were medium, 20 were slow. In the mirror-race, 16 would 190

be slow, 6 would remain medium, and 20 would be fast. Firstly, it is clear that the actual 191

race is more comfortable to run than the mirror race. Secondly, physiologically, whereas 20 192

slow kilometres give the possibility to recover the energy for 16 fast kilometres, it is not 193

certain that 16 slow kilometres would enable the runner to run 20 fast kilometres, as shall 194

be discussed below. 195

Remarkably, Berlin 2019 manifests a similar split of 15, 6 and 21 kilometres (fast, 196

medium and slow kilometres). Hence the mirror race would also be much more difficult to 197

perform in this case. 198

For Tokyo 2021, Berlin 2014 and Monza 2017 the average pace is distinct enough from 199

an integer value, so that each kilometre can be labelled as fast/difficult (red) or slow/easy 200

(green), see Figures 1 and 5. For Tokyo 2021 and Berlin 2014 there were more easy kilometre 201

than difficult kilometres, so that running the mirror race would again be unreasonable. 202

For Monza 2017, the situation is opposite, there were more difficult than easy kilometres. 203

Therefore, the mirror race, with positive skewness, would have been easier to run. 204

For Vienna 2019, a cursory look at the bar chart suggests that the distribution can be 205

seen as the mixture (see §1.2.14 in [14]) of two independent distributions. The first one, 206

represented by the right component of the graph, is rather symmetric and concentrated 207

around the mean value p ≈ 170 s. The second one, is reduced to that of one value 208

p(1) = p42 = 161 seconds, a very fast pace during the last kilometre. The negative 209

asymmetry is mainly due to this last kilometre, i.e. the fact that the runner had a excessive 210

amount of energy at the end of the race. The mirror race would consist of the superposition 211

of the same symmetric distribution centred about the average pace, and of a very high 212

value corresponding to a very slow kilometre, which is unrealistic. 213

2.4. Figures, Tables and Schemes 214

2.5. Mathematical Formulas 215

Formulas leading to Zar’s statistic are as follows.

A = γ1

√
(n + 1)(n + 3)

6(n − 2)
, (10)

B =
3(n2 + 27n − 70)(n + 1)(n + 3)
(n − 2)(n + 5)(n + 7)(n + 9)

, (11)

C =
√

2(B − 1)− 1, (12)

D =
√

C, (13)

E =
1

ln
√

D
, (14)

F = A

√
C − 1

2
, (15)

z = E ln(F +
√

F2 + 1) (16)
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2.6. Tables and Figures 216

Race min = p(1) max = p(42) r1 r10 r21 V1 V10 V21
Tokyo 2021 167 194 27 189 254 15% 10% 7%
Berlin 2014 165 181 16 106 137 9% 6% 4%
Berlin 2019 165 179 14 76 98 8% 4% 3%
Berlin 2018 164 178 14 73 124 8% 4% 3%
Vienna 2019 161 172 11 43 43 6% 2% 1%
Monza 2017 168 176 8 43 58 5% 3% 2%
Race total time p σ V γ1

Tokyo 2021 (E. K.) 2 h 08 min 38 s 182.4 s 7.2 4% - 0.31
Berlin 2014 (D.K) 2 h 2 min 57 s 174.8 4.1 2% - 0.47
Berlin 2019 (K.B) 2 h 01 min 41 s 173.0 3.0 2% - 0.55
Berlin 2018 (E.K) 2 h 01 min 39 s 173.1 3.0 2% - 0.82
Vienna 2019 (E.K) 1 h 59 min 40 s 169.7 1.9 1% - 2.32
Monza 2017 (E.K) 2 h 00 min 25 s 171.2 1.8 1% +0.56
Race p(42) − p(1) p − p(1) p(42) − p ∆2R
Tokyo 2021 27 15.4 11.6 -3.8
Berlin 2014 16 9.8 6.2 -3.6
Berlin 2018 14 9.1 4.9 -4.2
Vienna 2019 11 8.7 2.3 -5.4
Monza 2017 8 3.3 4.7 1.2
Race γ1 z p-value of z
Tokyo 2021 -0.31 -0.92 18%
Berlin 2014 -0.47 -1.36 9%
Berlin 2019 -0.55 -1.50 7%
Berlin 2018 -0.82 -2.25 1%
Vienna 2019 -2.32 -4.79 < 10−6%
Monza 2017 0.56 2.07 2%

Table 1. Zar statistic z. The p-value of z is P(N (0, 1) > z) if z > 0, or P(N (0, 1) < z) if z < 0.



Version February 15, 2022 submitted to Int. J. Environ. Res. Public Health 8 of 21

5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22
>

(p − 160) seconds
•

•2 •2 •2

•6

•8

•7

•6

•7

•2

Figure 1. Frequency of paces of Berlin 2014. For instance 8 kilometres were run at the pace 173 or 174
seconds. Slow (resp. fast) kilometres in green (resp. red). The black bullet on the p axis marks the
average pace.
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4-5 6-7 8-9 10-11 12-13 14-15 16-17 18-19 20-21
>

(p − 160) seconds
•

•1 •1

•3

•7

•

•6

•3

9=3+6

•7

•5

•7

Figure 2. Frequency of paces of Berlin 2019. Slow (resp. medium, fast) kilometres in green (resp. blue,
red). The 12-13 class is decomposed into two subclasses, 3 fast and and 6 medium kilometres.
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3-4 5-6 7-8 9-10 11-12 13-14 15-16 17-18 19-20 21-22
>

(p − 160) seconds
•

•1 •1 •1

•3

•10

•12=6+6

•6 •6

•10

•4

Figure 3. Frequency of paces of Berlin 2018. Slow (resp. medium, fast) kilometres in green (resp. blue,
red). The 12-13 class is decomposed into two subclasses, 6 medium and 6 slow kilometres
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>
(p − 160) seconds

•
1-2 3-4 5-6 7-8 9-10 11-12

•1

•9

•24

•8

Figure 4. Frequency of paces of Vienna 2019.

. 217
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8-9 10-11 12-13 14-15 16-17
• >

(p − 160) seconds

•5

•20

•11

•5

•
1

>
(p − 160) seconds3-7 8-12 13-17 18-22 23-27 28-32 33-37

•1

•4

•6

•9
•10

•11

•1

•

Figure 5. Frequency of paces of Monza 2017 and Tokyo 2021. Number of slow (resp. fast) kilometres
in green (resp. red). The black bullet on the p axis marks the average pace.

3. Discussion 218

The future of marathon training will focus on the qualitative aspects versus only 219

focusing on the quantitative data. This is certainly a step in the right direction as it was 220

Kipchoge’s confidence allowing him to break sub-2-hour marathon barrier. Advances in 221

wearable sensor technology have enabled real-time measurement of physiological data 222

during exercise ([2]). Future directions in training are going to be about encouraging 223

the marathon runner. To achieve this, we must provide ways of improving satisfaction 224

regarding training progress and with the feeling that it has been optimized. We are testing 225

the hypothesis that the ideal race, with the world’s best marathon runners, can have several 226

degrees of optimization. This can be observed in Kipchoge’s last 5 marathon’s, including 227
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42(1 − q) D = 42km

p2

p1

42(1 − q)

42q

km

pacep2p1

•

•

42q

42(1 − q)

Figure 6. Frequencies of a theoretical race with two paces and negative asymmetry

the exhibition marathons, where the paradigm of a perfect constant pace was applied. In 228

the official marathons (Berlin), the pace was not constant and run with other competitors; 229

these races are considered being the best performances ever ran. 230

The best races are run with a negative asymmetry of pace distribution. This means that 231

more time is spent running below Vmarathon and that the pace is variable, never constant. 232

Our recent publication about the asymmetric characteristics of marathon pace in elite 233

marathon runners, were not random, but well founded on mathematically demonstrated 234

principles. Estimating the optimal marathon pace should be done as a consequence of 235

optimal physiological homeostasis. Our results showed how to obtain a true individual 236

distribution shape, for instance concave or bathtub, by using the negative asymmetry of 237

pace distribution. We reported an optimal value for the negative asymmetry, showing how 238

this asymmetric distribution results from an oscillating pattern and the interaction between 239

extreme values. 240

3.1. The pace is variable, not uniform 241

Publications showing that pace is non-uniform are in agreement with prior studies of 242

short-distance competitions. Indeed, variability in pacing has been studied in short and 243

middle-distance running (e.g., 3000 m to 10 km). See [15], [16], [17], [18], [19], [20]. 244

These studies have focused on the influence of variability of pacing on metabolic 245

and performance parameters. However, [21], reported that elite marathon runners had 246

few changes in pace, suggesting low speed variability. More recently, the sub two-hour 247

marathon attempts in Monza (2017) and Vienna (2019) were based on the belief that constant 248

speed is the best way of running. These ideas were derived from the notion that an optimal 249

pace is non variable, according to the seminal model of [3]. 250

Recreational marathon runners adopt the same paradigm of constant speed by running 251

with a pace-group leader as provided by the marathon organizers. This blindly reinforces 252
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distance s in km

pace

pmax

pmin

distance s in km

vmax

vmin

speed v0(s)

distance s in km

vmax

vmin

speed v1(s)

Figure 7. A concave pace function on an elementary time stretch, a convex speed function v0, for
instance (22) on an elementary time stretch, and a speed function v1 with the same frequencies and
asymmetry as v0.
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vmax

speed v2(s)

vmin

distance s in km

Figure 8. bathtub curve function v2 with the same frequencies ans asymmetry as v0

the idealistic paradigm of constant speed, distorting the practice of running. However, 253

considering the physiological limitations (glycogen availability), means that runners must 254

choose the ideal pace allowing them to achieve the optimal performance without famously 255

“hitting the wall” or slowing down from extreme fatigue 10 kilometres or less before the 256

finish line (see [22]). 257

We must underline that negative pacing can help runners to achieve better results 258

(both recreational and professional). However, a great majority of runners just want to 259

complete a marathon or enjoy running, without focusing too much on optimizing their 260

pacing. Therefore, for them, even pacing is easier to follow and control. Indeed, for both 261

elite and recreational runners, planning variable pacing is not practical. The pacing is 262

mainly controlled by CNS and it is highly automated. Therefore, any change in pacing 263

can be hard to achieve, resulting from runners either slowing or speeding up too much. In 264

particular, if they are less experienced runners. Please elaborate some more, and possibly 265

add this as a limitation of this study. In addition, speeding and slowing are requesting an 266

additional muscle force to be exerted, thus spending extra energy even if it allow to elevate 267

the average pace. We still have to check the difference of energy spent by continuous energy 268

cost measurement between variable and even pace race, at least on half marathon real race. 269

The non-arbitrary sign of asymmetry, which cannot be accounted for by sampling 270

fluctuations in speed but by physiology, is explained by the “mirror race”. It is important 271

to understand that a runner cannot recover lost time in the first part of a marathon (as in 272

Monza) using their speed reserve (see [23], [24]). Recall that speed reserve is defined as 273

the difference between the velocity at VO2max and the maximal speed during a sprint or a 274

1000m distance (see [25]). 275

Variable pace running focuses the optimization of energy. These concepts were de- 276

veloped by AV Hill over 100 years ago with his papers on muscular exercise, lactic acid, 277

the supply and utilization of oxygen, all helping to establish the concept of “an-aerobic” 278

energy production during exercise, with oxidative restoration in recovery (see [26] ); it is 279

unlikely that he thought humans should run at a constant pace to achieve athletic records. 280

Ironically, ever since Hill’s time, schools often still teach students to run at a strict constant 281

pace as in, rather than to self-pace according to the rate of perception of exhaustion. It 282

has been proven that humans are natural runners and capable of accurately self-pacing 283

our accelerations and speed variations at three levels of intensity (soft, medium and hard 284

accelerations) (see [27]). Even if control of speed, and thus power output, are voluntary 285

(see [28]), the physiological signals that athletes receive estimating their abilities to sustain 286

any instantaneously chosen speed have yet to be to be elucidated. Computing the critical 287

speed from a personal best has shown, in the same way as for VO2max, that all the elite 288

marathon runners could run very close to their critical speed (90%-98%) (J[29], [30]. 289
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Furthermore, it has been shown that critical speed can be accurately estimated from a 290

non-exhaustive self-pace run ([31]). Even if these two paradigms of exercise (self-pace or 291

constant-load model) have different limitations (see [32]), the self-pace model has allowed 292

new insights into the optimization of energy transformation (see [33]). Energy transfor- 293

mation during exercise is thought to be variable; this allows for self-regulation so that 294

feed-forward or anticipatory regulation remains a critical signal to preserve homeostasis 295

and to avoid cellular catastrophe (see [34]). [33] showed that it is possible to consider the 296

time required for task completion, which can explain why power output (or speed) and 297

skeletal muscle recruitment (and hence VO2) in self-pace trials are almost immediately 298

reduced in exercise, only to return to near-optimal values during the “end spurt” (see [35]). 299

Examining the pacing signatures of the two best marathon performances and, given that 300

the same human has achieved these results, offers us the unique possibility to compare 301

these performances and further understand how the limits of human physiology were 302

elevated. In addition, we could also pattern this novel research to the over 9 million of 303

marathon runners crossing the finish line in 2019. 304

3.2. The pace is not symmetric, and the sign of asymmetry is explained via a “mirror race”, by 305

physiology, and not by sampling fluctuations. 306

Independent of the race or the runner, the pace is never symmetric, implying that 307

the central tendency and deviation do not entirely characterize the pacing signature. A 308

negative asymmetry of pace distribution signifies a faster race and the higher the absolute 309

value of the pacing asymmetry is, the better the performance is. Indeed, according to 310

our hypothesis, our results show that for each of these high-level races, we could give 311

the general shape of the data distribution. Independent of the marathons studied, we 312

always obtained an asymmetric shape. Interestingly, we showed that the asymmetries 313

for the two exhibition marathons, were different: negative for Vienna (the first 2-sub- 314

hour marathon race (1h59min40s and γ = −2.50) and positive in Monza (2h00min25s 315

and γ = +0.56). Furthermore, we showed Vienna was comprised of two independent 316

distributions, therefore it was really two different races: one was constant for 40 km, and 317

the other, also constant, but at a much higher speed. Remarkably, in the Vienna attempt, 318

Kipchoge had a remarkable “end spurt” in the final kilometer, helping him to break the 319

2-hour barrier and thus creating an artificial asymmetry. Similarly in Tokyo, after running 320

a very slow first half marathon while attempting to help his compatriot, Kipchoge finished 321

the ten last kilometres extremely fast. The marathon pace (or speed) frequency-distribution 322

manifests two remarkable features: non-uniformity, and skewness of the pace which has the 323

particularity of being negative. This is a condition of comprehending a good performance 324

i.e., the shortest time possible without excessive suffering. A U-shaped curve allows the 325

complete distribution of pacing. By now, pacing profiles and tactical behaviors of elite 326

runners have been shown to be a U-shape from the 1500 to the 10,000m (Casado et al., 2020). 327

This U-shape is characterized by a fast start, a slowing down during the middle part of the 328

race, and a fast finish characterizes world record performances (see [36]). 329

Although a parabolic J-shaped pacing profile (in which the “fast-start” is faster than the 330

middle part of the race but is slower than the end spurt) is observed in many championship 331

races ([36]), we showed that in the marathon, the best race is in U shape, which induced a 332

negative speed asymmetric distribution measured by ∆2R. Here, we reported the shape 333

distribution of the entire marathon, and we have formalized the role of the extreme values 334

and oscillations between them. In these world record performances, we show that non- 335

uniformity of a sequence of measurement means that they do not arise from a population 336

highly concentrated around a sample value as a normal distribution with a very slight 337

variance. 338

We also showed how the difference in extreme values distributions allows a char- 339

acterization of the optimal marathon as negatively asymmetric in the sense that the fast- 340

kilometres pace frequency decay occurs more progressively than the slower kilometres pace. 341

Analysing the “big data” of marathons reveals that foremost, the individual experience of 342
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training and running a marathon offers personal gratification, whether or not they achieve 343

their target of finishing less than 4h21min03s or 4h48min45s (the average male and female 344

marathon performances in 2018, respectively). Endurance running has never reached 345

this level of popularity, especially among women. Marathon running is truly human by 346

nature (see [37]). In this fundamental article, the authors showed how evolution has not 347

only shaped the human for long-distance running, but has also conditioned the human 348

brain to enjoy this type of physical activity through the development of endorphin release 349

and mood-elevating neuroendocrine mechanisms. When humans run, we are balanced 350

between a quest for performance and “the minimization of effort” which is defined as the 351

process that aims to achieve the most cost-effective behaviour based on our perceptions 352

(see[38]). Energy is the ability to produce physical action and effort is the cortical brain 353

activity associated with the initiation or maintenance of a behaviour. The brain constructs 354

our perceptions based not only on the current physical effort but also on previous similar 355

experiences, motivation, awareness, and affects (see [39]). Therefore, our theory of a mirror 356

race that, may or may not be possible to run, shows that an optimal marathon performance 357

must be performed without suffering and hence with variable pace. 358

3.3. Some mathematical speed functions as the bathtub with negatively skewed pace distributions 359

Let us show that the foregoing results are, obtained via calculus, in agreement with 360

some already identified running strategies, especially faster start and finish that are ob- 361

served even in the traditional (even-pacing) approach to record-setting results. 362

Assume that q ∈ (0, 1/2). Typically, q will represent the proportion of distance run fast
during a marathon. For instance the runner runs 42q kilometres fast at pace p1, and 42(1− q)
kilometres slowly at a pace p2 > p1. The bar chart of the pace sequence corresponds to the
increasing function, say ϕ, defined by

42q = ϕ(p1) < ϕ(p2) = 42(1 − q) (p1 < p2).

The bar chart of the pace distribution ϕ, given by Figure 6, is that of a Bernoulli distribution
with skewness coefficient

γ1 =
2q − 1√
q(1 − q)

< 0.

Let us generalize this fundamental example. Let s ∈ [0, 42] denote the curvilinear 363

abcissa, i.e. the distance from the start line. The instantaneous pace at s is denoted by p(s). 364

The bar charts of the pace sequence considered up to now will be replaced by a
continuous curve, the density function p 7→ ϕ(p), defined as follows. The infinitesimal
distance ds = ϕ(p)dp represents the distance spent by the runner at the pace ranging from
p to p + dp. In accordance with the preceding example we assume that ϕ is increasing. The
derivative of s 7→ p(s) is p′(s) = dp/ds. The preceding equalities lead to

dp
ds

=
1

ϕ(p)
, ϕ(p)dp = ds, Φ(p) = s, (17)

where Φ(p) is such that Φ′(p) = ϕ(p). We obtain

p(s) = Φ−1(s) (18)

as the pace function. Note that equation p′(s) = ϕ(p) and the fact that ϕ is assumed to be
an increasing function of s, which is itself increasing with p, imply that p′ is decreasing,
thus p is concave. Up to a constant factor the speed function is given by v(s) = 1/p(s), so
that

v′′(s) = − p′′

p2 + 2
(p′)2

p3 > 0, (19)

and v is an increasing convex function. 365
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Conversely, every increasing speed function s 7→ v(s) gives rise to a concave de- 366

creasing function s 7→ p(s) (invert the roles of v and p in (19)) and to a density function 367

ϕ(p) = 1/p′(s)) that is increasing, as the inverse of a decreasing function. 368

Let us make these formulas explicit in the case

ϕ(p) = pα, (0 < α < 1) (20)

so that ϕ is a beta distribution, with negative skewness [14] Chapter. Then up to multiplica-
tive factors, Φ(p) = pα+1,

p = Φ(−1)(s) = s
1

α+1 = sβ (0 < β < 1) (21)

Since γ1(p) is invariant under affine transformations, we can set

p(s) = C1 + C2sβ, v0(s) =
1

C1 + C2sβ
(22)

These computations lead to rather unrealistic pace strategies. But keep in mind that 369

our aim was only to produce some pace distribution with negative skewness. 370

From the speed function in (22), we can build two speed functions that will lead to
the same density function ϕ:

v1(s) =

{
v0(s), for 0 < s < T,
v2(s) = v0(s − T), for T < s < 2T

, (23)

and

v2(s) =

{
v(s), for 0 < s < T,
v2(s) = v(2T − s), for T < s < 2T

(24)

The graphs of v1 and v2 are drawn in Figures 7 and 8, the dashed parts being those which 371

were added. Periodicity and symmetry, used to build v1 and v2 respectively, can be used 372

an arbitrary number of times. 373

From the mathematical point of view, a running strategy can be outlined as follows: 374

First divide the race into sub-races, called “pace-cells”, and for each of these cells, select a 375

speed function as v0, v1 or v2. Provided these functions are built from the same elementary 376

function as v0, the global skewness will be that of v0. 377

Figure 7 can be associated with an oscillator as a clock with frictions, receiving regular 378

impulses, see [40], §III.4.2. 379

The theory of oscillators seems well-suited for providing models for oscillating func- 380

tions. Our analogy is not based on purely mathematical similarities, but is a consequence of 381

our results. The interplay between extreme (small and large) values that we have unveiled, 382

corresponds, for oscillators, to the well-known restoring forces. Indeed, Claude Bernard 383

already pointed out that all biological systems are oscillators, in the sense that the value of 384

a variable remaining constant at its mean value is never observed, that is to say biological 385

systems are oscillators. Our statistical analysis illustrates this fact concerning the world’s 386

best marathon runners. 387

3.4. Oscillations between extremes values allow the interplay between aerobic and anaerobic 388

metabolisms, optimizing the recovery of energy. 389

We proposed to focus on a time series generated by the oscillating pattern of the 390

damped clock discussed in [40]. Remarkably, when human and other mammals run, 391

the body’s complex system of muscles, tendons and ligament springs behaves like a 392

single linear spring (“leg spring”). A simple spring-mass model, comprising a single 393

linear leg spring and a mass equivalent to the animal, has been shown to describe the 394

mechanisms of running remarkably well (see [41]). Hence, the stride can be considered as a 395

damped clock. We have shown that the first sub-2-hour attempt (Vienna) was not optimal. 396
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Therefore, by considering the pacing oscillations between extremes values according to 397

the athlete’s physiology, these world record performances could be run faster, even the 398

1h50min marathon as predicted by [42]; but only when the method for predicting the record 399

is based on physiology. Indeed, currently it is thought that running a marathon at the fastest 400

speed possible appears to be regulated by the rate of aerobic metabolism (i.e., marathon 401

oxygen uptake) of a limited amount of carbohydrate energy (i.e., muscle glycogen and 402

blood glucose) and the pace that can be maintained without developing hyperthermia. 403

However, to oscillate between extreme pace values, there is a need to have a high range 404

of speed incompatible with monotonous training ([43], [44]). Indeed, our results confirmed 405

that the best performance was achieved by an oscillating pattern between extreme paces. 406

Extreme value theory is used to predict the occurrence of rare events such as extreme 407

floods, large insurance losses, stock market crashes, and human life expectancy. Indeed, 408

some authors have already applied the extreme value theory to athletic events, using 409

estimation methods involving moment method and maximum likelihood methods (MLE). 410

Accurate estimations of future athletic records were accomplished using both methods. 411

Hence, an interesting question is: under the present knowledge of training, materials (shoes, 412

suits and equipment), and anti-doping regulations, by how much further could athletes 413

possibly exceed current world records in the near future? We used the extreme value theory 414

dealing with the issues of extremes without considering them to be independent because 415

we took into account (as stated by Hill), the “fatigue factor”. 416

Running a marathon between extreme values, training must use the so-called “po- 417

larized training” emphasizing low and high intensity, rather than medium intensity (see 418

[43] , [45]). A recent study based on around 14,000 individuals with more than 1.6 million 419

exercise sessions containing duration and distance, and with a total distance of 20 million 420

km showed that the analysis of individual long-term training protocols leads to a wide 421

spectrum of physiological responses ([2]). This study on big data confirms the concept of 422

“polarized training”, which involves running a wide range of speeds; these techniques are 423

currently used by elite athletes and have been shown to be the most efficient training meth- 424

ods, resulting in the greatest improvements in the key variables of endurance performance 425

in well-trained endurance athletes. 426

4. Conclusions 427

We analysed the three best real-world marathon performances ever ran to the hy- 428

pothesis that Kipchoge optimizes his pacing in relation to his aerobic and anaerobic 429

power and endurance. The conclusions from this could be an inspiration source for the 430

over 9 million of marathon runners who crossed the finish line in 2018 (Esther Fleming, 431

https://www.sidmartinbio.org/how-many-runners-are-there/, accessed on 01/09/2021). 432

Using mathematics and physiology, we opened new perspectives on how optimize en- 433

durance and power in the marathon. The pacing strategy of elite marathon runners is 434

to start fast and then to recover by running just below their average pace for the 2/3 435

racing distance, generating a negative asymmetry, i.e., a median speed below the average. 436

This “lazy” race confirms AV Hills’ discoveries about the concept of “an-aerobic” energy 437

production during exercise, with oxidative restoration in recovery are factors determining 438

the variation of speed with distance. 439

However, our aim was not to replace the coach advice, but only to show that the future 440

of best performance as world record, is perhaps to look forward the variable pace shape. 441
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