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Abstract: The pacing of a marathon is arguably the most challenging aspect for runners, particularly
in avoiding a sudden decline in speed, or what is colloquially termed a “wall”, occurring at approxi-
mately the 30 km mark. To gain further insight into the potential for optimizing self-paced marathon
performance through the coding of comprehensive physiological data, this study investigates the
complex physiological responses and pacing strategies during a marathon, with a focus on the
application of Shannon entropy and principal component analysis (PCA) to quantify the variability
and unpredictability of key cardiorespiratory measures. Nine recreational marathon runners were
monitored throughout the marathon race, with continuous measurements of oxygen uptake (

.
VO2),

carbon dioxide output (
.

VCO2), tidal volume (Vt), heart rate, respiratory frequency (Rf), and running
speed. The PCA revealed that the entropy variance of

.
VO2,

.
VCO2, and Vt were captured along the

F1 axis, while cadence and heart rate variances were primarily captured along the F2 axis. Notably,
when distance and physiological responses were projected simultaneously on the PCA correlation
circle, the first 26 km of the race were positioned on the same side of the F1 axis as the metabolic
responses, whereas the final kilometers were distributed on the opposite side, indicating a shift in
physiological state as fatigue set in. The separation of heart rate and cadence entropy variances from
the metabolic parameters suggests that these responses are independent of distance, contrasting with
the linear increase in heart rate and decrease in cadence typically observed. Additionally, Agglomera-
tive Hierarchical Clustering further categorized runners’ physiological responses, revealing distinct
clusters of entropy profiles. The analysis identified two to four classes of responses, representing
different phases of the marathon for individual runners, with some clusters clearly distinguishing
the beginning, middle, and end of the race. This variability emphasizes the personalized nature of
physiological responses and pacing strategies, reinforcing the need for individualized approaches.
These findings offer practical applications for optimizing pacing strategies, suggesting that real-time
monitoring of entropy could enhance marathon performance by providing insights into a runner’s
physiological state and helping to prevent the onset of hitting the wall.

Keywords: pacing; marathon running; entropy; physiological responses; performance; fatigue;
hitting the wall

1. Introduction

At the Olympic Games, the marathon continues to hold its mythical status as the
ultimate event in the program. This race, long heralded as the pinnacle of human endurance,
has evolved from a challenge for elite athletes to a global phenomenon, with over 1.1 million
participants annually [1]. Despite its widespread popularity, the marathon remains one
of the most grueling tests of physical and mental resilience. A critical aspect of marathon
performance is the ability to manage pacing and energy expenditure effectively. Improper
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pacing can lead to the well-documented phenomenon of hitting the wall, characterized
by a dramatic decline in running pace, typically occurring after the 30 km mark. This
phenomenon is often attributed to glycogen depletion and associated metabolic shifts,
which severely impair a runner’s ability to maintain pace [2,3].

Understanding the factors that influence pacing strategies has been a central focus in
sports science, particularly in endurance events like the marathon. Effective pacing—the
deliberate regulation of speed and effort throughout the race—is crucial for optimizing
performance and avoiding premature fatigue [4,5]. Traditionally, marathon runners have
been advised to maintain an even pace throughout the race, aiming to distribute their energy
expenditure evenly over the entire distance to minimize the risk of early fatigue [5–8].
However, more recent research suggests that elite marathon runners tend to adopt a more
dynamic pacing strategy, characterized by a relatively fast start followed by periods of
controlled energy release and variable pacing [9,10].

For instance, Billat et al. (2019) found that runners optimize their performance by
covering more than 50% of the race distance below their average speed [9]. This strat-
egy involves an initial fast start, which is then followed by a phase of controlled energy
management, allowing for variable pacing below the race’s average speed.

This approach highlights the importance of starting strong while also conserving
energy for the later stages of the race, where maintaining pace becomes increasingly
challenging. This pacing strategy contrasts with the traditional even-paced strategy and
underscores the necessity of adaptability and real-time physiological feedback during the
marathon to delay fatigue and avoid hitting the wall [2,5,7,11].

Moreover, Pycke et al. (2022) provide further insight into the effectiveness of a non-
uniform pacing strategy, showing that the best marathon performances are achieved not by
maintaining a constant pace but by oscillating between extreme values [10]. Their study
suggests that these oscillations between faster and slower segments optimize the interplay
between aerobic and anaerobic metabolisms, thereby enhancing overall endurance and
performance. This strategy, however, requires precise physiological control and the ability
to interpret and act on feedback from the body during the race. Abbiss and Laursen (2008)
emphasize that pacing is not merely about maintaining a steady pace but involves continu-
ous adjustments based on the athlete’s internal and external environment, underscoring
the need for a nuanced understanding of pacing as a dynamic process [11].

Despite significant progress in understanding marathon pacing, the interaction be-
tween these strategies and the full spectrum of physiological responses during a marathon
remains underexplored. Traditionally, studies have focused on isolated variables such as
heart rate (HR) and oxygen uptake (

.
VO2) to assess performance. However, recent advance-

ments in wearable technology and data analytics have revolutionized our ability to monitor
multiple physiological variables continuously throughout the race. This technological
progress presents a unique opportunity to move beyond single-variable analysis and delve
into the multidimensional data generated during a marathon, offering deeper insights into
performance dynamics.

Leveraging these advancements, our study employs Shannon entropy [12,13]—a
concept rooted in information theory—to quantify the variability and unpredictability in
physiological signals such as heart rate and oxygen uptake. While Shannon entropy has
been widely used in disciplines like neuroscience [14,15] and information theory [12,16], its
application in sports science, particularly in endurance sports like marathons, is relatively
novel. Most prior research has concentrated on team sports, such as football, where entropy
has been utilized to analyze the complexity and unpredictability of team dynamics and
player movements [17,18]. In contrast, the use of entropy in individual endurance sports
remains underexplored, particularly for understanding how athletes manage physiological
stress and pacing over extended periods. By employing entropy analysis in this context,
we aim to detect subtle changes in physiological responses that could indicate the onset of
fatigue or other critical performance factors during a marathon.
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We then apply principal component analysis (PCA) [19,20] to the entropy values of
each physiological component of the marathon data. PCA is a powerful tool that reduces the
dimensionality of complex datasets, allowing us to identify the most significant patterns of
variability in these physiological measures. The objective was to retain as much information
as possible by focusing on key sources of variation. If the initial two or three dimensions
account for most of the data’s variability, a two- or three-dimensional representation can be
constructed to make the data easier to understand. PCA is particularly useful when dealing
with large, complex datasets like those collected during a marathon [21]. It enables us to
identify relationships between variables, narrowing the focus to the most significant ones
for further analysis. The new variables generated by PCA are uncorrelated, making them
suitable for subsequent analyses like regression. A key feature of PCA is the creation of a
correlation circle, a visual tool that shows the relationship between the original variables
and the principal components. Variables that are close to each other on the circle are highly
correlated, while those positioned far apart or at right angles are uncorrelated or negatively
correlated, respectively.

In our study, the first two principal components (commonly referred to as F1 and F2)
were analyzed to assess their ability to capture the variability in the dataset. To refine the
analysis and discern potential differences in PCA patterns according to the marathon’s
two halves, we also employed Agglomerative Hierarchical Clustering (AHC) [22]. AHC
employs a tree-like structure called a dendrogram to progressively group similar data
points, facilitating the identification of clusters within the dataset.

Our multivariate analysis [23], which used PCA and AHC, provided valuable in-sights
into the clustering of physiological data (e.g., speed, cadence) relative to the distance run.
The analysis revealed two distinct axes: one horizontal axis closely associated with RPE
and Rf, and a vertical axis linked with speed, HR, and tidal volume (Vt). Notably, RPE was
closely correlated with Rf, while speed, cadence, and HR clustered along the orthogonal
F2 axis. Such multivariate analysis could be applied to a larger population to test the
hypothesis that some runners exhibit an RPE-Rf-sensitive profile, while others display
sensitivity to cadence and Vt. When we classified the runners according to the variables
at each 5 km interval, we observed that the classification was consistent for both RPE and
speed. Additionally, Runners 6, 7, and 8 exhibited a distinct clustering pattern, while no
such similarities were found in the dendrograms for other variables.

These patterns could reveal optimal pacing strategies, offering new perspectives on
how athletes manage their energy and avoid the detrimental effects of hitting the wall.

Through analysis of the cardiorespiratory response and speed entropy, this study aims
to further explore the physiological information that runners receive during a real marathon
race, specifically focusing on collecting the entire cardiorespiratory response. Expanding
on previous methodologies, this study investigates whether the physiological information
integrated by runners throughout a marathon is reflected in entropy, as suggested by a prior
pilot study [23]. We propose that a multivariate analysis of this entropy matrix can enhance
our understanding of hitting the wall by identifying distinct clusters of entropy levels
according to the distance run. Additionally, this study examines the multidimensional
characteristics of entropy in cardiorespiratory responses to determine whether they provide
redundant physiological information during the race. By exploring these factors, we aim to
offer new insights into the physiological mechanisms underlying marathon performance.

2. Materials and Methods
2.1. Subjects

The study included nine recreational but experienced male marathon runners, se-
lected based on their similar physiological and endurance profiles. Their average age was
40.1 years (±10.6), with an average weight of 72.7 kg (±6.5) and height of 178.3 cm (±7.5)
(Table 1).
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Table 1. Subjects’ ages, personal records, and the year of their best performances.

Runners id Age (Years) Fastest Marathon Times
(Years)

Sénart Marathon Times
(2019)

1 58 03h27′32′′ (2013) 04h30′34′′

2 47 02h59′22′′ (2016) 03h32′07′′

3 29 02h57′03′′ (2015) 03h14′13′′

4 36 03h27′58′′ (2017) 03h51′13′′

5 43 02h44′00′′ (2015) 03h13′42′′

6 23 03h22′40′′ (2019) 03h22′40′′ *
7 44 03h34′57′′ (2017) 03h34′57′′ *
8 47 03h12′48′′ (2016) 03h31′34′′

9 34 02h50′00′′ (2019) 02h50′00′′ *
* Subjects who achieved their personal best during the Sénart Marathon.

These runners, who had consistently trained for marathons for over five years, engaged
in a weekly routine of three to four training sessions, covering distances between 50 to
80 km. The training regimen included one session of high-intensity intervals (6 × 1000 m
at 90–100% of their maximal heart rate) and a tempo run (15–25 km) at 90–100% of their
marathon pace. To eliminate potential variability due to gender, only male participants
were included in the study [24,25]. All participants provided informed consent, and the
study protocol received ethical approval from the relevant institutional review board (CPP
Sud-Est V, Grenoble, France; reference: 2018-A01496-49).

2.2. Experimental Design: Marathon Race

Participants competed in an official marathon race (Sénart Marathon, Seine-et-Marne,
France), which commenced at 9 a.m. on 1 May 2019. Weather conditions ranged from
11 to 15 ◦C with an average humidity of 60%, and no precipitation was recorded. Blood
lactate levels were measured using a Lactate PRO2 LT-1730 device (ArKray, Kyoto, Japan)
immediately after the warm-up (15 min at an easy pace) and three minutes post-race.

2.3. Data Collection

Throughout the marathon, respiratory gases, including
.

VO2, carbon dioxide output
(

.
VCO2), ventilation [

.
VE], Vt, Rf, and the respiratory exchange ratio (RER) were continuously

recorded using a portable breath-by-breath gas analysis system (K5; Cosmed, Rome, Italy).
The system was paired with a Garmin GPS watch (Forerunner 630, Olathe, KS, USA),
which measured HR, cadence, and running speed, averaged over five-second intervals.
Participants wore masks equipped with inspiratory valves designed to minimize resistance
during high-intensity exercise, ensuring comfort and accurate data collection. Given
that recent findings have demonstrated that marathon performance depends on pacing
oscillations [10], the runners were encouraged to self-pace their run without focusing on
the cardio-GPS watch, as its display was intentionally concealed. Hydration and nutrition
stations were available every 5 km, providing water, fruit, and sugar, with runners allowed
to remove their masks briefly to drink or eat. Each runner drank one glass of water and ate
fruits at each hydration point.

2.4. Statistical Analysis

All data were analyzed using XLSTAT software (version 2023.2.0.1411; Addinsoft,
Paris, France). The results were expressed as mean ± standard deviation (SD), with
statistical significance set at p < 0.05.

2.4.1. Shannon Entropy

Shannon entropy, a concept from information theory [12,16], is used in this study
to quantify the unpredictability or variability within physiological signals like heart rate
and oxygen uptake during the marathon. In simple terms, entropy measures the level
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of “randomness” in a signal. The more unpredictable a signal is, the higher its entropy
value [26].

For example, consider heart rate data: if a runner’s heart rate fluctuates significantly
and unpredictably throughout the race, the entropy of that heart rate signal would be high.
Conversely, if the heart rate remains steady with little variation, the entropy would be low.
We calculated Shannon entropy using the following formula [13]:

H(X) = −∑
xi

p(xi) log(xi) (1)

Here, H(X) represents the entropy, and p(xi) is the probability of each observed state
i within the physiological data (e.g., different levels of heart rate). We divided the data into
quartiles (Q1, Q2, Q3), with each quartile representing a different “state” of the variable, to
understand how the information (or randomness) in the signals evolves throughout the
marathon.

In the context of our research, analyzing Shannon entropy allows us to understand
how the body’s physiological systems respond to the demands of the marathon, particularly
how these responses vary and potentially impact performance.

2.4.2. Multivariate Data Analysis

We examined potential multicollinearity among several key variables, including HR,
Rf, running speed, and cadence. Multicollinearity occurs when two or more independent
variables in a regression model are highly correlated, which can complicate the interpreta-
tion of results. To assess the extent of multicollinearity, we calculated the Variance Inflation
Factor (VIF) [27].

The VIF is calculated using the following formula:

VIFi =
1

1 − R²i
(2)

where Ri
2 is the coefficient of determination for regressing the ith against all other inde-

pendent variables. Essentially, the VIF measures how much the variance of a regression
coefficient is inflated due to collinearity with other variables in the model.

VIF values start at 1, indicating no multicollinearity, and have no upper limit. A
VIF between 1 and 5 suggests moderate multicollinearity, which is generally acceptable.
However, when VIF values exceed 5, this indicates significant multicollinearity, meaning
that the coefficients for those variables are less reliable, and the associated p-values may be
misleading [28].

In our analysis, we retained variables with VIF values lower than 5 for further ex-
amination through PCA. The rationale was that these variables, despite their high multi-
collinearity, might capture significant and consistent trends in the physiological responses
of all runners. Specifically, variables such as Rf, running speed, Vt, HR, and cadence, which
showed consistent patterns in the time series data, were included in the PCA to reduce
data dimensionality and identify the most influential components.

This approach allowed us to focus on the key physiological variables that exhibited the
strongest and most consistent relationships throughout the marathon, providing a clearer
understanding of how these factors contribute to overall performance.

2.4.3. Principal Component Analysis

Principal component analysis [29–31] is a powerful statistical technique used to sim-
plify the complexity of multivariate data while preserving as much variability as possible.
In this study, PCA was employed to reduce the dimensionality of our dataset, which in-
cluded various physiological variables measured during the marathon, such as HR, Rf,
.

VO2, running speed, Vt, and cadence. By transforming these variables into a smaller set of
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uncorrelated components, PCA helps us identify the most significant patterns in the data
that contribute to overall performance.

The core idea behind PCA is to project the original data onto a new set of axes,
known as principal components. These components are linear combinations of the original
variables and are ordered such that the first principal component captures the maximum
possible variance in the data, followed by the second principal component, and so on. This
process not only reduces the complexity of the data but also highlights the most influential
variables in explaining the observed physiological responses during the marathon.

For example, imagine we are tracking multiple physiological variables throughout
the race. Each variable provides valuable information, but some may be highly correlated
or redundant. PCA combines these related variables into “principal components”, which
summarize the essential information while minimizing redundancy. As a result, instead of
analyzing each variable independently, we can focus on a few principal components that
collectively explain most of the variance in the data.

In our research, after assessing multicollinearity using the VIF, we selected variables
with significant multicollinearity for PCA to uncover the underlying structure of the data.
The PCA allowed us to identify which physiological responses (such as changes in

.
VO2

or HR) were most significant across different phases of the marathon. These insights
are crucial in understanding how various physiological factors interact and influence a
runner’s pacing strategy and overall performance.

By reducing the dataset to its most informative components, PCA enabled us to
draw clearer, more focused conclusions about the key physiological drivers of marathon
performance, paving the way for more targeted strategies to optimize pacing and improve
race outcomes.

2.4.4. Agglomerative Hierarchical Clustering

Agglomerative Hierarchical Clustering (AHC) [22,32,33] is a method used to group
data points—here, the physiological responses of marathon runners—based on their simi-
larities. Unlike methods that require predefining the number of clusters, AHC starts with
each data point as its own cluster and then iteratively merges the closest clusters, forming
a hierarchy or “tree” of clusters known as a dendrogram. This approach allows for the
exploration of the natural structure of the data without imposing prior assumptions on the
number of groups.

AHC operates by calculating the “distance” between clusters, typically using a mea-
sure such as Euclidean distance, and merging the pair of clusters that are closest to each
other. This process continues until all data points are grouped into a single cluster. The
resulting dendrogram provides a visual representation of the clustering process, with the
length of the branches indicating the similarity between clusters—the shorter the branch,
the more similar the clusters.

In the context of this study, AHC was applied to the physiological data collected
from the marathon runners, such as heart rate, respiratory frequency, and oxygen uptake,
after reducing the data’s complexity using PCA. By clustering the runners based on these
variables, distinct groups of runners with similar physiological responses throughout the
race were identified.

This analysis was particularly valuable for revealing how different physiological
patterns emerged at various phases of the marathon. For example, AHC grouped runners
who displayed consistent heart rate variability and oxygen uptake patterns in the early
stages of the race, suggesting a shared pacing strategy, while another cluster included
runners whose physiological responses fluctuated more significantly, indicating a different
energy management approach.

By applying AHC, the marathon runners were classified into distinct groups based on
their entropy profiles and key physiological variables. This clustering provided insights
into how different pacing strategies and physiological responses influenced performance
outcomes during the race. AHC not only enhanced the understanding of the complex
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relationships between physiological variables but also offered practical insights for tailoring
pacing strategies to individual runners’ physiological profiles.

3. Results

Table 2 presents the average speed, HR, and cadence across consecutive 5 km segments
for each runner, with particular attention to the point at which each participant hit the wall.
In general, a noticeable decrease in speed is observed after the runners reach this critical
point. For example, Runner 1’s speed declined steadily from 10.96 km/h in the first 5 km
to 8.85 km/h between the 35th and 40th km after hitting the wall at the 27th km. Similar
trends were observed in other runners, such as Runner 3, whose speed dropped from 14.63
km/h at 15–20 km to 11.02 km/h at 35–40 km after hitting the wall at the 30th km. Heart
rate remained relatively stable for most runners, with minor fluctuations observed across
the segments. Cadence also showed slight variations, generally maintaining stability before
the wall, followed by a slight decrease in some cases after the wall. Runner 4, for instance,
experienced a decrease in cadence from 86.4 ppm at 15–20 km to 77.8 ppm at 35–40 km
after hitting the wall at the 26th km.

Table 2. Summary of average speed (km/h), heart rate (HR: beats per minute), and cadence for each
5 km segment. The cadence values are reported as steps per minute (ppm) for one leg, as recorded by
Garmin. The values are expressed as mean ± standard deviation.

id Variable Wall (km) 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–42

1

Speed

27

10.96 ±
0.34

11.07 ±
0.21

10.77 ±
0.21

10.72 ±
0.34

10.36 ±
0.28 9.83 ± 0.42 9.57 ± 0.39 8.85 ± 0.87 9.71 ± 0.45

HR 155.30 ±
3.29

159.80 ±
1.60

156.30 ±
1.57

157.70 ±
1.30

160.40 ±
1.85

159.80 ±
1.10

159.80 ±
0.84

151.90 ±
8.43

161.50 ±
2.83

Cadence 87.80 ±
0.76

88.20 ±
0.45

88.00 ±
0.79

86.60 ±
0.65

86.20 ±
1.44

86.10 ±
0.89

84.30 ±
0.97

82.40 ±
5.86

81.00 ±
2.12

2

Speed

33

13.96 ±
0.28

13.76 ±
0.47

13.47 ±
0.39

13.44 ±
0.36

13.29 ±
0.33

12.87 ±
0.27

12.33 ±
0.30

11.67 ±
0.84

13.41 ±
1.25

HR 159.50 ±
2.09

163.10 ±
0.55

158.60 ±
1.85

158.50 ±
1.46

159.60 ±
2.04

158.20 ±
1.60

158.00 ±
1.12

158.30 ±
0.84

162.50 ±
2.12

Cadence 89.00 ±
0.61

88.00 ±
0.71

88.10 ±
1.29

87.90 ±
0.82

88.40 ±
0.82

87.30 ±
1.44

87.50 ±
0.35

87.80 ±
0.45

90.00 ±
1.41

3

Speed

30

13.78 ±
0.71

14.41 ±
0.32

14.63 ±
0.30

14.28 ±
0.28

14.07 ±
0.21

13.23 ±
0.39

12.32 ±
0.80

11.02 ±
0.32

13.55 ±
0.76

HR 152.10 ±
9.77

161.50 ±
2.29

166.10 ±
2.53

163.30 ±
1.60

162.70 ±
0.91

160.00 ±
2.45

156.00 ±
1.27

151.60 ±
1.29

161.00 ±
0.71

Cadence 82.90 ±
0.55

84.00 ±
0.50

83.80 ±
0.67

83.40 ±
0.65

84.10 ±
0.65

82.80 ±
0.27

81.70 ±
0.27

80.20 ±
0.91

81.75 ±
1.06

4

Speed

26

11.03 ±
0.28

11.07 ±
0.31

10.77 ±
0.24

10.62 ±
0.15

10.52 ±
0.34 9.78 ± 0.26 9.59 ± 0.31 8.30 ± 1.36 9.96 ± 0.97

HR 155.49 ±
2.95

159.63 ±
1.41

156.50 ±
1.08

157.97 ±
1.57

160.21 ±
1.46

160.80 ±
0.74

159.90 ±
0.58

151.51 ±
9.80

162.19 ±
1.24

Cadence 87.92 ±
0.44

88.00 ±
0.42

87.96 ±
0.54

86.42 ±
0.75

86.47 ±
1.09

85.40 ±
0.99

85.03 ±
0.78

77.83 ±
8.76

84.17 ±
0.87

5

Speed

30

16.76 ±
0.46

16.09 ±
0.52

13.80 ±
0.19

13.76 ±
0.43

14.05 ±
0.47

12.90 ±
1.19

13.15 ±
0.50

12.94 ±
0.56

12.53 ±
0.31

HR 156.60 ±
4.20

160.90 ±
0.89

162.70 ±
1.40

166.30 ±
0.97

168.70 ±
0.97

167.90 ±
1.34

169.60 ±
0.96

172.20 ±
2.75

177.00 ±
1.41

Cadence 88.10 ±
0.96

86.00 ±
0.35

85.50 ±
0.35

85.50 ±
1.06

84.90 ±
0.42

85.50 ±
0.94

84.90 ±
0.55

84.60 ±
0.65

84.25 ±
0.35

6

Speed

34

12.93 ±
0.19

13.22 ±
0.11

12.98 ±
0.21

12.97 ±
0.21

12.98 ±
0.22

12.58 ±
0.42

12.24 ±
0.55

11.05 ±
0.21

11.58 ±
0.13

HR 148.90 ±
4.55

157.40 ±
1.14

159.40 ±
0.74

161.60 ±
0.65

163.40 ±
1.39

163.60 ±
1.14

162.90 ±
1.56

158.80 ±
1.35

161.25 ±
2.47

Cadence 93.00 ±
0.35

92.40 ±
0.42

92.30 ±
0.91

92.50 ±
0.61

92.60 ±
0.96

91.50 ±
0.50

91.70 ±
0.57

92.10 ±
0.22

92.50 ±
0.71

7

Speed

27

12.57 ±
0.23

12.76 ±
0.20

12.17 ±
0.54

12.12 ±
0.43

12.04 ±
0.24

11.57 ±
0.43

11.13 ±
0.45

10.75 ±
0.38

HR 157.70 ±
3.35

161.90 ±
2.22

162.50 ±
0.35

163.10 ±
1.52

164.00 ±
3.46

162.10 ±
2.82

155.60 ±
2.82

152.00 ±
5.68

Cadence 86.30 ±
0.27

86.30 ±
0.45

85.80 ±
0.57

85.70 ±
0.57

85.70 ±
0.27

85.80 ±
0.27

85.70 ±
0.27

85.83 ±
0.29
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Table 2. Cont.

id Variable Wall (km) 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–42

8

Speed

34

13.17 ±
0.72

13.45 ±
0.26

12.84 ±
0.33

12.82 ±
0.31

12.52 ±
0.46

12.03 ±
0.26

11.81 ±
0.28

11.51 ±
0.27

11.40 ±
0.33

HR 163.00 ±
7.90

167.20 ±
1.04

166.60 ±
0.96

167.40 ±
2.51

170.10 ±
0.22

169.90 ±
1.56

169.00 ±
1.46

169.70 ±
1.57

170.25 ±
2.47

Cadence 92.60 ±
0.22

92.60 ±
0.42

92.50 ±
0.79

92.20 ±
0.45

91.50 ±
1.06

91.80 ±
0.27

91.90 ±
0.82

92.50 ±
0.79

92.50 ±
0.00

9

Speed

27

15.38 ±
0.35

15.40 ±
0.22

15.10 ±
0.21

14.82 ±
0.30

15.14 ±
0.43

14.64 ±
0.51

14.74 ±
0.14

14.15 ±
0.20

14.86 ±
0.11

HR 137.30 ±
11.83

147.70 ±
0.57

146.80 ±
3.31

150.00 ±
2.62

146.50 ±
2.24

149.00 ±
1.41

151.30 ±
1.15

150.10 ±
1.95

154.25 ±
1.77

Cadence 87.00 ±
0.61

86.80 ±
0.27

86.10 ±
0.22

85.30 ±
1.10

85.00 ±
0.35

83.90 ±
0.74

85.00 ±
0.61

84.90 ±
0.55

85.00 ±
0.71

Note: To obtain the total cadence, the values should be multiplied by two (e.g., 89 ppm corresponds to 178 ppm
for both legs). Runner 7 accidentally stopped his watch at km 37.

Table 3 presents the entropy values for running speed, HR, and cadence across con-
secutive 5 km segments for all runners, with a focus on the changes observed around the
point at which each participant hit the wall. Across all runners, a general trend of increased
entropy in speed, HR, and cadence is observed as they approach and pass the critical wall
point, indicating a rise in variability and instability in their performance metrics.

Table 3. Summary of entropy values for speed, heart rate (HR), and cadence across consecutive 5 km
segments during the marathon. The entropy values represent the complexity and variability of each
physiological variable, providing insights into the dynamic fluctuations experienced by each runner
throughout the race. The values are expressed as mean ± standard deviation, illustrating the average
level of entropy and its variability within each 5 km segment.

id Variable Wall (km) 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–42

1
Speed

27
1.16 ± 1.24 0.96 ± 0.69 1.6 ± 0.6 2.41 ± 0.46 2.1 ± 0.49 2.31 ± 0.33 1.84 ± 0.56 1.32 ± 0.9 2.01 ± 0.8

HR 1.23 ± 0.79 1.78 ± 0.57 1.63 ± 0.4 1.84 ± 0.6 1.8 ± 0.64 1.13 ± 0.71 1.72 ± 0.83 1.45 ± 1.06 1.16 ± 1.03
Cadence 1.51 ± 0.86 0.82 ± 0.69 1.47 ± 0.68 1.53 ± 0.45 2 ± 0.48 2.11 ± 0.67 2.72 ± 0.55 2.38 ± 0.37 2.97 ± 0.48

2
Speed

33
1.49 ± 0.63 1.26 ± 0.75 1.59 ± 0.7 1.91 ± 0.73 1.63 ± 0.71 1.7 ± 0.42 1.29 ± 0.5 0.75 ± 0.74 0.88 ± 1.2

HR 2.79 ± 0.16 0.69 ± 0.97 1.63 ± 1.03 1.86 ± 0.45 1.57 ± 0.32 1.59 ± 0.74 1.93 ± 0.58 1.87 ± 0.51 1.55 ± 1.34
Cadence 2.12 ± 0.67 2.57 ± 0.63 2.91 ± 0.39 2.98 ± 0.25 2.38 ± 1.02 2.45 ± 0.58 2.79 ± 0.42 2.56 ± 0.4 2.31 ± 1.07

3
Speed

30
1.48 ± 0.67 1.28 ± 0.55 1.29 ± 0.57 1.3 ± 0.47 1.56 ± 0.36 1.08 ± 0.64 1.13 ± 0.58 0.15 ± 0.25 1.23 ± 1.08

HR 1.14 ± 0.71 1.91 ± 0.17 1.18 ± 0.78 1.68 ± 0.48 1.71 ± 0.38 1.34 ± 0.72 0.88 ± 0.67 1.02 ± 0.82 1.26 ± 1.09
Cadence 2.63 ± 0.44 1.89 ± 0.57 1.65 ± 0.75 2.92 ± 0.16 2.08 ± 0.73 1.95 ± 0.75 1.42 ± 0.29 1.36 ± 0.77 1.63 ± 0.59

4
Speed

26
1.69 ± 1 1.33 ± 0.67 1.48 ± 0.59 1.56 ± 0.74 1.89 ± 0.87 2.23 ± 0.5 1.86 ± 0.79 0.87 ± 0.99 0.2 ± 0.34

HR 1.1 ± 1.02 2.15 ± 0.53 1.3 ± 0.85 1.48 ± 0.86 1.92 ± 0.6 1.79 ± 1.05 1.14 ± 0.68 1.06 ± 0.99 1.12 ± 1
Cadence 2.05 ± 1.08 0.45 ± 0.43 1.24 ± 0.79 1.03 ± 1.14 2.18 ± 0.48 2.21 ± 0.58 2.56 ± 0.74 2.24 ± 0.85 1.79 ± 1.55

5
Speed

30
0 ± 0 0.74 ± 1.15 1.79 ± 0.36 1.79 ± 0.4 1.58 ± 0.22 1.37 ± 0.79 1.69 ± 0.73 1.4 ± 1.02 0 ± 0

HR 0.47 ± 0.51 1.54 ± 0.27 0.89 ± 0.85 0.69 ± 0.65 2.05 ± 0.31 2.1 ± 0.41 1.31 ± 0.69 0 ± 0 0 ± 0
Cadence 0.28 ± 0.31 1.4 ± 0.54 1.61 ± 0.5 2.33 ± 0.48 2.1 ± 0.52 2.23 ± 0.28 2.49 ± 0.24 1.22 ± 0.88 0 ± 0

6
Speed

34
1.87 ± 0.66 1.22 ± 0.35 1.7 ± 0.42 2.09 ± 0.26 2.05 ± 0.64 1.55 ± 0.5 1.1 ± 0.73 0.24 ± 0.37 1.31 ± 1.34

HR 0 ± 0 1.22 ± 0.76 2.15 ± 0.49 1.3 ± 0.65 0.94 ± 0.69 0.84 ± 0.77 0.9 ± 0.77 1.87 ± 0.3 1.98 ± 0.49
Cadence 1.56 ± 0.91 2.14 ± 0.29 2.41 ± 0.77 2.57 ± 0.37 2.49 ± 0.42 2.25 ± 0.29 2.43 ± 0.25 2.41 ± 0.31 2.57 ± 0.68

7
Speed

27
2.76 ± 0.39 1.9 ± 0.66 2.63 ± 0.72 2.05 ± 0.62 2.58 ± 0.34 2.47 ± 0.37 2.17 ± 0.58 0.83 ± 0.45

HR 1.72 ± 1.03 1.67 ± 0.72 1.94 ± 0.79 1.5 ± 0.39 1.04 ± 1.05 1.38 ± 0.83 1.49 ± 1.13 1.35 ± 1.17
Cadence 2.15 ± 0.46 2.16 ± 0.37 2.15 ± 0.31 2.26 ± 0.2 2.32 ± 0.32 2.39 ± 0.32 1.21 ± 0.31 1.08 ± 0.3

8
Speed

34
1.12 ± 1.14 0.52 ± 0.81 1.48 ± 0.85 1.72 ± 0.92 1.57 ± 0.4 1.63 ± 0.46 1.98 ± 0.52 1.29 ± 0.88 0.84 ± 1.12

HR 1.06 ± 1.09 2.09 ± 0.7 2.08 ± 0.52 1.73 ± 0.56 1.68 ± 0.31 1.5 ± 0.98 1.57 ± 0.89 1.95 ± 1.12 1.61 ± 1.64
Cadence 2.17 ± 0.3 2.42 ± 0.28 2.41 ± 0.42 2.84 ± 0.26 2.84 ± 0.13 2.82 ± 0.14 2.92 ± 0.17 2.95 ± 0.16 2.86 ± 0.17

9
Speed

27
1.39 ± 1.33 1.2 ± 0.6 2.02 ± 0.58 1.85 ± 0.36 2.14 ± 0.42 2.1 ± 0.86 1.62 ± 0.58 0.68 ± 0.67 1.42 ± 1.04

HR 1.03 ± 1.12 1.43 ± 0.77 2.22 ± 0.61 2.44 ± 0.78 2.19 ± 1.2 1.99 ± 1 1.48 ± 0.81 1.95 ± 0.6 0.87 ± 0.98
Cadence 0.31 ± 0.35 0.14 ± 0.33 1.09 ± 1.12 2.71 ± 0.44 2.91 ± 0.38 2.44 ± 0.75 2.34 ± 0.38 2.7 ± 0.32 2.51 ± 0.27

Note: Runner 7 accidentally stopped his watch at km 37.

For most runners, speed entropy tends to increase around the point where they hit the
wall. For example, Runner 1’s speed entropy increases from 1.6 ± 0.6 between 10–15 km to
2.31 ± 0.33 between 25–30 km, shortly after hitting the wall at the 27th km. Similar patterns
are seen in Runner 4, whose speed entropy rises from 1.48 ± 0.59 between 10–15 km to
2.23 ± 0.5 between 25–30 km, hitting the wall at the 26th km.
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Heart rate entropy also shows noticeable changes around the wall. For instance,
Runner 9, who hit the wall at the 27th km, experiences an increase in HR entropy from
1.03 ± 1.12 between 0–5 km to 2.44 ± 0.78 between 15–20 km, reflecting greater variability
in heart rate as the race progresses. This pattern is consistent across several other runners,
including Runner 7, whose HR entropy increases from 1.72 ± 1.03 between 0–5 km to
1.94 ± 0.79 between 10–15 km, before stabilizing slightly.

Cadence entropy generally follows a similar trend, with most runners showing increased
variability in their cadence as they hit the wall. Runner 2, for example, shows an increase in
cadence entropy from 2.12 ± 0.67 between 0–5 km to 2.79 ± 0.42 between 30–35 km, hitting
the wall at the 33rd km. Runner 8 also displays a steady increase in cadence entropy, reaching
a peak of 2.95 ± 0.16 between 35–40 km, after hitting the wall at the 34th km.

Figure 1 presents the biplot from the PCA applied to the physiological and cadence
responses during the marathon, using Runner 3 as a representative example. The analysis
shows that the first principal component (F1), which accounts for 47.13% of the total
variance, is strongly associated with the entropy variance of

.
VO2,

.
VCO2, Vt, running speed,

and RER. These variables are closely aligned along the F1 axis, indicating that they share a
significant amount of variance.
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Figure 1. Biplot from the principal component analysis (PCA) illustrating the relationship between
physiological and cadence responses during the marathon, with Runner 3 serving as a representative
example for all nine marathoners. The red vectors represent the variables, including heart rate (HR),
cadence (Cad), oxygen uptake (

.
VO2), carbon dioxide output (

.
VCO2), respiratory frequency (Rf), tidal

volume (Vt), respiratory exchange ratio (RER), ventilation (
.

VE), and speed. The blue points represent
the observations corresponding to the different kilometers of the marathon. The F1 axis explains
47.13% of the variance, while the F2 axis accounts for 17.19%, together capturing a total of 64.32% of
the variance in the data.
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The last kilometers of the marathon (36 to 42) are located on the biplot in the opposite
direction to the vectors representing the respiratory variables (

.
VO2,

.
VCO2, Vt, and RER)

along the F1 axis.
The second principal component (F2), which explains 17.19% of the variance, is

associated with HR and cadence, which are closely aligned with this axis. The entropy of Rf
also follows a different pattern, with a closer alignment to the F2 axis in the two-dimensional
projection. Cadences are also notably aligned along the F2 axis.

Figure 2 illustrates the results of the Agglomerative Hierarchical Clustering (AHC)
performed to classify the entropy profiles of marathon runners, based on their physiological
responses throughout the race.
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a major separation between C2 and C3 at a dissimilarity value of approximately 70. The 
overall dissimilarity reached up to 100, highlighting three key phases in the runner’s phys-
iological response, representing the initial, middle, and final stages of the marathon. This 
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Figure 2. The dendrogram for the classification of entropy profiles during the marathon using
Agglomerative Hierarchical Clustering. The y-axis represents the dissimilarity between clusters,
while the x-axis shows the kilometers run by each participant. (a) The dendrogram for Runner 6,
showing four distinct clusters, representative of four other runners with a four-class profile. (b) The
dendrogram for Runner 2, showing three clusters, typical of three runners with a three-class profile.
(c) The dendrogram for Runner 8, displaying two clusters, indicating a two-class profile unique to
this runner.
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For Runner 6 (Figure 2a), the AHC identified four distinct clusters (C1, C2, C3, C4),
with the transition from C3 to C4 occurring at a dissimilarity value of approximately 80,
indicating a noticeable change in physiological responses. This four-class profile, shared by
three other runners, suggests distinct stages or phases throughout the marathon.

For Runner 2 (Figure 2b), the AHC revealed three distinct classes (C1, C2, C3), with
a major separation between C2 and C3 at a dissimilarity value of approximately 70. The
overall dissimilarity reached up to 100, highlighting three key phases in the runner’s
physiological response, representing the initial, middle, and final stages of the marathon.
This three-class profile was also observed in two other runners.

For Runner 8 (Figure 2c), the AHC identified two main classes (C1 and C2), with the
overall dissimilarity exceeding 120, the highest among the three runners. The transition
between these two classes occurred at a dissimilarity value of approximately 50, marking a
significant shift in physiological responses, possibly corresponding to the early and late
stages of the marathon.

4. Discussion

The present study explored the intricate relationship between pacing strategies and
physiological responses during a marathon, employing Shannon entropy as a novel tool to
quantify the complexity of these responses for each marathoner. The findings of this study
provide new insights into how marathon runners manage their physiological resources
over the course of the race, and how this management may influence their performance,
particularly in relation to the phenomenon of hitting the wall.

In this study, we applied PCA to explore the multidimensional nature of physiological
entropy during a marathon, focusing on key variables such as

.
VO2,

.
VCO2, HR, Rf, cadence,

and running speed. PCA is a powerful tool for reducing the dimensionality of complex
datasets, allowing us to identify the most significant patterns of variability in these physio-
logical measures. Our analysis revealed that these variables were distributed across two
main axes (F1 and F2), each representing distinct dimensions of physiological variability.

Notably, the F1 axis captured the maximal entropy variance for
.

VO2,
.

VCO2, Vt,
running speed, and RER. However, the later stages of the marathon were positioned on the
opposite side of this axis, indicating a divergence in physiological states as fatigue set in.
The alignment of these respiratory variables on the F1 axis underscores their critical role in
the physiological stress experienced during the final kilometers of the race, a phenomenon
consistent with the onset of hitting the wall as documented by Coyle (2007) [34]. The
concentration of these variables on the same axis suggests that they are closely linked in
their response to the increasing metabolic demands as glycogen stores deplete and fatigue
sets in.

Interestingly, while
.

VO2 and
.

VCO2 were aligned on the F1 axis,
.

VCO2 does not
follow the respiratory frequency, despite typically inducing an increase in Rf [35]. This
discrepancy could be due to the low value of RER reported in prior studies, which is
often associated with lower blood lactate accumulation during endurance events [36,37].
Although a marathon can elicit

.
VO2 max during the race, this state is only achieved for a

small percentage of the marathon duration (4 ± 4% of the run time) [38]. Additionally, it
is known that hyperventilation induced by increased

.
VCO2 can lead to a slowing of EEG

activity, potentially resulting from cerebral ischemic anoxia due to hypocapnic cerebral
vasoconstriction, direct effects of hypocapnia on nerve cells, or cerebral alkalosis [39]. These
findings suggest that the respiratory parameters are closely linked in their response to
the increasing metabolic demands during the later stages of the marathon. Assessing the
probability of changes in O2 and CO2 states in relation to speed and cadence alterations
might provide insights into the central governor’s [40,41] role in integrating physiological
signals. This role includes modulating pace based on the relative changes in

.
VO2 and

.
VCO2 states, particularly when these variables approach their maximums, as measured in
a preliminary maximal test [42,43].
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In contrast, the entropy variance for HR, cadence, and Rf was associated with the
F2 axis, indicating that these variables may reflect separate dimensions of physiological
response during the marathon. The differentiation of entropy measures across multiple
dimensions suggests that various physiological systems respond differently to the demands
of marathon running. While respiratory variables showed increased entropy variability
towards the end of the race, HR, cadence, and Rf exhibited distinct patterns, particularly
along the F2 axis. This suggests that these variables may maintain a more stable response
throughout the marathon, potentially reflecting the body’s effort to preserve homeostasis
under conditions of prolonged physical stress. These findings are consistent with research
by Laursen and Rhodes (2001), which highlighted the relatively stable nature of heart rate
during steady-state endurance exercise, contrasting with the more variable responses seen
in respiratory parameters as the body attempts to cope with the increasing fatigue [44].

The second major finding of our study is that ACH effectively identified distinct
patterns of physiological entropy throughout the marathon, demonstrating notable inter-
individual variability in how race segments are physiologically categorized. Among four of
the nine participants, AHC identified four distinct classes of entropy, reflecting a more com-
plex physiological response pattern. These classes often exhibited overlapping segments,
blending kilometers from the start, middle, and end phases of the marathon. This suggests
that these runners experienced more gradual transitions in their physiological responses,
without clear-cut shifts between race phases, potentially reflecting varied strategies in
energy management or differing responses to fatigue.

Conversely, in two other participants, the AHC revealed two distinct entropy classes,
which marked a clear physiological division between the early and later stages of the race.
This two-class distinction likely reflects the characteristic shift in physiological demands
that occur when runners transition from relative metabolic stability to the more severe
metabolic stress associated with hitting the wall, typically around the 30 km mark [45].
These runners appeared to have relatively stable physiological responses during the initial
stages of the race, followed by a pronounced shift as they neared this critical point.

For the remaining three runners, the analysis revealed three distinct classes, corre-
sponding to the early, middle, and late stages of the race. This three-phase pattern suggests
a more gradual adaptation to the physiological demands of the race, with runners modulat-
ing their energy expenditure in the middle phase before the physiological strain intensifies.
Studies have suggested that such a pacing strategy, involving a slight reduction in speed
during the middle stages of a race, can help conserve glycogen stores and delay the onset
of significant fatigue [7,11]. These runners may have employed more controlled pacing
strategies, making subtle adjustments as they progressed, which allowed them to distribute
the metabolic load more evenly over the course of the marathon.

These findings suggest that the segmentation of the marathon, from an informational
entropy perspective, is subject to considerable individual differences. The varying num-
ber of classes required to categorize race segments highlights the personalized nature of
physiological responses during prolonged endurance exercise. This study underscores the
potential utility of individualized entropy analysis of physiological metrics as a tool for
optimizing marathon performance. By tailoring race strategies based on the unique classifi-
cation of entropy across different race segments for each runner, there is an opportunity to
enhance pacing, energy management, and overall race efficiency.

The objective of research focused on running performance is to define the optimal
speed variation based on both aerobic and anaerobic physiological characteristics. This
variation synchronizes two metabolic pathways to achieve the highest average speed in
the marathon, aided by recovery possibilities [10]. Human metabolism operates through
aerobic and anaerobic systems simultaneously to respond to fluctuations in power demand.
If we liken human metabolism to a hybrid engine, anaerobic metabolism functions like
an electric battery, enabling acceleration, while aerobic metabolism serves as the thermal
engine, recharging the battery. Running too fast risks hitting the “marathon wall” due to
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factors such as decreased blood glucose, which is essential for muscle contraction even at
low speeds.

Muscular fatigue also contributes as the muscles lose contractility and elasticity after
the approximately 35,000 steps required to complete a marathon in 3 h and 15 min, with a
step frequency of 3 Hz. Additionally, fluctuations in body temperature, as seen in the 2018
Boston Marathon with hypothermia cases, can increase the perception of strain, leading to
uncontrollable speed drops. Nybo and Nielsen (2001) used electroencephalography (EEG)
and electromyography to measure brain and muscle activity during exercise in elevated
temperatures [46]. They concluded that heightened perceived effort was more linked to
cerebral activity than muscle activity, finding a linear relationship between brain activity and
rising body temperature. A temperature rise to 40–41 ◦C, recorded at marathon completion,
should not occur as early as the 28th kilometer. For reference, an increase of +10 beats per
minute in heart rate for the same speed can indicate elevated body temperature.

Digestive discomfort, often caused by excessive fluid intake or overly concentrated
sports drinks, can also affect performance [47,48]. High entropy values are linked to
changes in velocity, and using velocity entropy as a reference may be more beneficial than
relying solely on maximal aerobic speed. Since not all optimal speed variation parameters
can be controlled, trusting one’s sensations becomes paramount. Speed regulation involves
a constant interplay between a predictive pace plan (feed-forward) and continuous adjust-
ment (biofeedback). One hypothesis suggests that the central governor in the brain oversees
this process, treating the body as a complex system, adjusting skeletal muscle recruitment
to manage pacing strategies [49]. Fatigue can be understood as a sensory perception arising
from the integration of physiological, biochemical, and sensory feedback, which may or
may not correlate with changes in muscle force production.

Athletes adopt a range of paces depending on the event’s duration. According to the
central governor model, pace adjustments and exercise cessation are part of a dynamic
regulatory strategy aimed at protecting the body. This subconscious pacing strategy appears
oscillatory, while changes in RPE occur more gradually, reflecting biological demands tied
to maintaining homeostasis or approaching exercise termination [40,50–52]. The central
nervous system (CNS) integrates feed-forward information with afferent sensory feedback
from metabolic and other changes in various organs, resulting in these pacing strategies [50].
However, this assertion remains unproven in the context of real marathon running. EEG
offers new opportunities to measure brain activity non-invasively and is increasingly used
in exercise research [53,54]. Human EEG has been shown to synchronize with muscle
contractions [55–57] and gait phases [58].

The findings of this study reinforce the understanding that optimal marathon perfor-
mance requires a delicate balance between aerobic and anaerobic metabolism. The ability to
switch between these metabolic pathways is crucial for maintaining speed while avoiding
premature fatigue, analogous to a hybrid engine alternating between electric and thermal
energy sources. This concept is well-documented in endurance sports research [59,60].

While our study did not directly measure brain activity, prior research shows that EEG
can provide insights into how the CNS contributes to fatigue and pacing strategies [61].
The alignment of physiological variables with distinct axes in the PCA suggests that central
regulation mechanisms may play a role in pacing adjustments, especially in the later stages
of the marathon. This aligns with the central governor model, where the brain modulates
effort to keep physiological systems within safe limits [41,59].

Future research could benefit from incorporating EEG measurements alongside en-
tropy analysis to further explore the CNS’s role in endurance performance. This could
lead to more effective strategies for managing pace and avoiding fatigue in marathon
running [62,63].

These findings offer several practical implications for marathon runners, coaches,
and sports scientists. The identification of distinct entropy profiles in cardiorespiratory
responses provides a valuable tool for optimizing pacing strategies. By understanding the
evolution of a runner’s physiological responses throughout a marathon, tailored strategies



Sports 2024, 12, 252 14 of 17

can be developed to enhance performance and minimize premature fatigue. Additionally,
real-time monitoring of cardiorespiratory entropy could allow runners to dynamically
adjust their pace during the race. For example, reducing pace in response to early signs of
excessive energy expenditure could conserve energy for the critical later stages, improving
overall performance and reducing the risk of exhaustion.

Insights into the changing entropy profiles across the race also offer a nuanced under-
standing of fatigue management. By pinpointing stages where significant physiological
changes are likely, targeted interventions can help maintain endurance and focus during
these critical periods. Coaches could leverage entropy data to create personalized train-
ing regimens that align with a runner’s specific physiological characteristics, enhancing
training effectiveness.

The potential integration of advanced technologies such as EEG and artificial intelli-
gence for real-time physiological data analysis could lead to wearable devices that provide
immediate feedback and performance optimization. This technological advancement could
democratize sophisticated data analytics, benefiting runners of all levels.

Lastly, understanding variations in entropy profiles could aid in injury prevention.
Identifying patterns linked to overexertion or injury risk allows for strategic adjustments
in training or race plans, mitigating these risks. However, further research is needed to
validate these results on larger, more diverse populations before implementing them on a
large scale.

5. Conclusions

This study provides valuable insights into the complex relationship between pacing
strategies and physiological responses during a marathon, with a particular focus on the
role of respiratory variables and the application of Shannon entropy and principal com-
ponent analysis (PCA) to quantify these dynamics. The findings suggest that respiratory
measures, especially oxygen uptake, carbon dioxide output, and tidal volume, are critical
in managing physiological demands; however, during the later stages of the marathon,
these measures diverge from earlier trends, as reflected in their positioning on the opposite
side of the F1 axis, indicating a shift in the body’s metabolic state as the risk of hitting
the wall increases. The distribution of entropy variance across multiple axes for different
physiological variables highlights the complexity of the body’s response to prolonged
endurance exercise and suggests that multiple physiological factors must be considered to
optimize performance and manage fatigue effectively.

Furthermore, the application of Agglomerative Hierarchical Clustering (AHC) pro-
vided additional insights into individual variability in physiological responses. The AHC
analysis revealed distinct patterns among runners, with some exhibiting two, three, or four
distinct entropy classes throughout the marathon. This variability indicates that runners
experience physiological transitions at different points during the race, reflecting varied
pacing strategies and fatigue responses. The ability of AHC to classify these patterns
underscores its potential as a tool for identifying personalized pacing strategies and for
understanding how different runners manage their energy expenditure over the course of
the marathon.

However, several limitations should be acknowledged. The relatively small sam-
ple size and focus on recreational marathon runners may limit the generalizability of
these findings to broader populations, particularly elite athletes who may exhibit distinct
physiological responses and pacing strategies. Additionally, while the study suggests a
potential role for central regulation mechanisms in pacing strategies, this hypothesis was
not directly tested. Future research would benefit from integrating neurophysiological
assessments, such as EEG, to more comprehensively explore the central nervous system’s
role in endurance performance.
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